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In this study, a Cluster-Tuned Matched Filter (CTMF) technique was applied to data acquired by the Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS) over marine and terrestrial locations known to emit methane
(CH4). At the Coal Oil Point marine seep field, prominent CH4 anomalies were consistent with advection from
known areas of active seepage. For a region with natural CH4 and oil seepage located west of downtown Los
Angeles, significant CH4 anomalieswere identified for known sources at the La Brea Tar Pits and in close proximity
to probable sources, including an office complex documented as venting CH4 continuously and hydrocarbon
storage tanks on the Inglewood Oil Field. However, interpretation of anomalies was complicated by noise and
false positives for surfaceswith strong absorptions at the samewavelengths as CH4 absorption features. Segmen-
tation of results identified 16 distinct locations of contiguous pixels with high CTMF scores and segments were
classified into probable CH4 anomalies and confusers based on the spectral properties of the underlying surface
over the full spectral range measured by AVIRIS. This technique is particularly well suited for application over
large areas to detect CH4 emissions from concentrated point sources and should permit detection of additional
trace gasses with distinct absorption features, including carbon dioxide (CO2) and nitrous oxide (N2O).
Thus, imaging spectrometry by an AVIRIS-like sensor has the potential to improve high resolution greenhouse
gas mapping, better constraining local sources.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

Methane (CH4) is a long-lived greenhouse gas with an average
atmospheric residence of approximately 7.9 years (Lelieveld et al.,
1998). Onemolecule of CH4 is 72 timesmore effective at trapping radiant
energy than a molecule of carbon dioxide (CO2) on a 20 year time scale
(IPCC, 2007). Global atmospheric CH4 has more than doubled in the
last two centuries with an annual growth rate that has been highly
variable since the 1990s with renewed growth starting in 2007
(Dlugokencky et al., 2009) and average concentrations exceeding
1.8 ppm in 2012 (NOAA, 2012).
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Emission sources and sinks exhibit high spatial heterogeneity and
large-scale interannual variability (Bousquet et al., 2006) and estimates
for total sources of atmospheric CH4 have considerable uncertainty,
ranging between 500 and 600 Tg year−1 (IPCC, 2007). Between 60
and 70% of CH4 emissions are presently anthropogenic (Lelieveld
et al., 1998) and include emissions from domestic ruminants, rice
agriculture, waste handling, and fossil fuel production. Wetlands,
termites, and geological seeps are significant natural sources
(Etiope et al., 2009), while major CH4 sinks include oxidization by
the hydroxyl radical (OH), loss to the stratosphere, and consumption
by methanotrophs in soils (Lelieveld et al., 1998). Approximately 90%
of CH4 destruction is due to OH oxidation (Lelieveld et al., 1993),
however, CH4 destruction is minimal on the time scale of minutes
to hours relevant to studying local emissions nearby the source.

On global scales, partitioning between natural and anthropogenic CH4

sources remains uncertain and emission estimates for individual source
categories can vary by as much as a factor of two (Dlugokencky et al.,
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2011). On regional scales, uncertainties for anthropogenic CH4 emissions
are considerable, between 9 and 17% in theUnited States (EPA, 2011) and
19 and 36% for a number of countries in northwest Europe (Bergamaschi
et al., 2010).

CH4 has strong rotational-vibrational transitions causing absorp-
tion in the mid-infrared (MIR) and thermal-infrared (TIR), permitting
detection by satellite sensors like the Infrared Atmospheric Sounding
Interferometer (IASI: Aires et al., 2002), the Tropospheric Emission
Spectrometer (TES: Beer et al., 2001), and the Atmospheric Infrared
Sounder (AIRS: Tobin et al., 2006). Because detection in the TIR requires
a strong thermal contrast between ground and lower atmosphere and is
limited by sensor saturation due to a high CH4 absorption coefficient,
current sensors cannot provide near-surface concentrations.

In addition to absorptions in the TIR, CH4 has absorptions in the
shortwave infrared (SWIR) between 1400 and 2500 nm (Fig. 1, top).
In this region, water vapor has considerable spectral overlap with CH4,
particularly beyond 2300 nm, which complicates CH4 detection
(Fig. 1, bottom). These SWIR absorptions enabled global CH4 mapping
by the Scanning Imaging Absorption Spectrometer for Atmospheric
Chartography (SCIAMACHY) onboard the Envisat satellite, a grating
spectrometer with eight channels operating from 240 to 2,400 nm
with a spectral resolution between 0.2 to 1.4 nm and spatial resolution
ranging from 30 × 60 km to 30 × 240 km (Buchwitz et al., 2004). The
Weighting Function Modified Differential Optical Absorption Spectros-
copy (WFM-DOAS) retrieval algorithm (Buchwitz et al., 2000) was
applied to 2003 data from SCIAMACHY channels 4, 6, and 8 to estimate
column amounts of CO (carbon monoxide), CO2, and CH4 (Buchwitz
et al., 2005). Frankenberg et al. (2005) developed an iterative maxi-
mum a posteriori-DOAS (IMAP-DOAS) algorithm using DOAS and the
linear relationship between vertical column-densities for CO2 and CH4

to estimate global CH4 column-averaged mixing ratios over terrestrial
surfaces and detect regions with high column averages, including the
Red Basin in China and the Sudd wetlands of southern Sudan
Fig. 1. (Top) CH4 andH2O transmittance spectra generated usingModtran 5.3, parameter-
ized for amid-latitude summermodel atmosphere and 8.9 km sensor altitude for the COP
scene. Transmittance is shown in high resolution for CH4 (light red) and H2O (light blue)
and convolved to AVIRISwavelengths for CH4 (dark red) H2O (dark blue). (Bottom) SWIR
region showing considerable spectral overlap between H2O and CH4. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version
of this article.)
(Frankenberg et al., 2011). While the Envisat satellite mission ended
in 2012, the Greenhouse Gas Observing Satellite (GOSAT: Saitoh et al.,
2009) continues to provide global CH4 mapping in good agreement
with ground based measurements (Butz et al., 2011) and results from
global 3-D chemical transport models (Parker et al., 2011).

Global CH4 concentrations are well constrained due to existing
spaceborne remote sensing that provides an effective means of
detecting continental scale variation in CH4 concentrations. However,
spaceborne sensors lack the fine spatial resolution needed to detect
near-surface emissions. Local emission monitoring typically relies
upon ground-based measurements with limited spatial coverage, such
as gas chromatography, tunable diode lasers (Hsu et al., 2010), or
Fourier transform spectrometers at fixed sites (Wunch et al., 2009).
Airborne sensors could provide valuable data for constraining emissions
at local to regional scales (NRC, 2010). Improved constraint of emissions
at these scales is critical for improving national greenhouse gas budgets
and the partitioning between anthropogenic and natural sources
(Bovensmann et al., 2010). Airborne measurements could also help
address discrepancies between top-down and bottom-up estimates
of emissions (Montzka et al., 2011) and complement ongoing global
monitoring efforts at coarser spatial resolutions (Schepers et al.,
2012).

Airborne imaging spectrometers are well suited formonitoring local
sources because they can provide coverage over large regions with the
fine spatial resolution necessary to resolve point source emissions.
The Airborne Visible Infrared Imaging Spectrometer (AVIRIS) measures
reflected solar radiance across 224 contiguous spectral bands between
350 and 2500 nm with a signal-to-noise ratio that should permit CH4

mapping (Leifer et al., 2006b). Roberts et al. (2010) used AVIRIS
data acquired over the Coal Oil Point (COP) seep field in the Santa
Barbara Channel, California to calculate spectral residuals for CH4

above background and a CH4 index derived from the average residual
between 2248 and 2298 nm. Although strong CH4 anomalies were
detected in close proximity to known seeps,mapping proved challenging
given results were overly sensitive to albedo (Roberts et al., 2010).

Using a high-glint AVIRIS scene acquired over COP, Bradley et al.
(2011) developed a band ratio technique using radiance for a CH4 ab-
sorption band (2298 nm) and a CO2 absorption band (2058 nm) to gen-
erate the AVIRIS CH4 index, ζ (L2298/L2058). In the absence of strong local
sources of CH4 or CO2, these gasses are well mixed and a regression of
CH4 and CO2 bands produces a straight line. If additional CH4 above back-
ground is present in the lower boundary layer and CO2 is well mixed, ra-
diance for the CH4 band decreases due to increased absorption, resulting
in a lower CH4 to CO2 band ratio. Despite variations in surface albedo, this
method clearly detected a CH4 plume that was consistent with wind ad-
vection from a sonar-quantified source (Bradley et al., 2011).

While Roberts et al. (2010) and Bradley et al. (2011) demonstrate
that CH4 from marine sources can be detected using AVIRIS scenes
with high sunglint, these techniques cannot be applied to terrestrial
locations that rarely exceed 50% albedo, where the majority of
anthropogenic emissions occur (NRC, 2010). Although water can often
be assumed spectrally flat in the SWIR (Roberts et al., 2010), this as-
sumption is unrealistic for most land cover types. Spectral variation in
surface reflectance arising from heterogeneous land cover invalidates
the use of a ratio, where a change in radiance at 2298 nm relative to
2058 nm could either be a product of changing CH4 or CO2 absorption,
or a change in surface reflectance with wavelength.

This study aims to improve methods for detecting absorption
features of CH4, thereby permitting high spatial resolution mapping of
local emissions overmarine environments and heterogeneous terrestrial
surfaces. We applied a Cluster-Tuned Matched Filter (CTMF) technique
(Funk et al., 2001) to AVIRIS scenes from the COP seep field and a portion
of Los Angeles known for natural CH4 and oil seepage. The CTMF
algorithm identified a number of significant CH4 anomalies over known
and probable CH4 sources, including natural marine and terrestrial CH4

seepage and a CH4 plume at the Inglewood Oil Field.

image of Fig.�1
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2. Methods

2.1. Study sites

The COP seep field as well as the Mid-Wilshire and Inglewood
neighborhoods of Los Angeles, California were the focus of this study
because they contain known CH4 sources from marine and terrestrial
environments (Fig. 2). Located offshore of Santa Barbara, California,
the COP seep field is one of the largest and best studied sources of
natural CH4 emissions. Major seeps include the Trilogy Seep, Horseshoe
Seep, and IV Super Seep with bubble diameters ranging between 200
and 104 μm (Leifer et al., 2006a) and CH4 fractions between 50 and
70% at the surface (Clark et al., 2010). Total atmospheric CH4 emissions
for COP are estimated at 100000 m3/day (Hornafius et al., 1999),
while the global contribution from marine seepage is estimated at 50
Tg CH4 year−1 of which 30 Tg CH4 year−1 reaches the atmosphere
(Kvenvolden & Rogers, 2005).

The terrestrial study sites are located in Los Angeles, California,
which has a history of poor air quality and CH4 concentrations well
above global averages (Townsend-Small et al., 2012). Located approxi-
mately 8 to 12 km west of downtown Los Angeles, the Mid-Wilshire
and Inglewood neighborhoods have significant oil and CH4 seepage.
This is most clearly illustrated by the hydrocarbon and water mixture
with visible CH4 bubbles present at the La Brea Tar Pits. In the surrounding
areas, CH4 gas can often be seen bubbling from between cracks in paved
surfaces after rains (Gurevich et al., 1993). Following the 1985 Ross
Department Store explosion caused by natural CH4 buildup, the city
of Los Angeles designated a Methane Zone and Methane Buffer
Zone with additional building codes requiring CH4 mitigation such
as gas detectors in addition to active and passive venting systems
(Chilingar & Endres, 2005). Beyond potential safety hazards, CH4

seepage on the global scale contributes to the estimated 20 to 40
Fig. 2. (a) Study sites showing one AVIRIS scene for COP (s_01) and two overlapping flight l
showing Mid-Wilshire and Inglewood subsets. (c) PC1 for portion of s_01 showing COP sub
Tg CH4 year−1 released globally by natural terrestrial CH4 seepage
(Etiope et al., 2009).

The urban Los Angeles Basin contains over seventy oil fields
(Chilingar & Endres, 2005) with over 21000 inactive or active oil
and natural gas wells in Los Angeles county alone (DOGGR, 2010a).
Much of the basin has elevated levels of CH4, between 1.91 to
2.10 ppm based on data from four monitoring stations averaged
over 1994 and 1995 (Dwight Oda, California Air Resources Board,
Pers. Comm. 2010) and more recently 1.76 to 2.16 ppm in 2008
(Hsu et al., 2010). Preliminary research using stable isotope analysis
suggests elevated levels of CH4 in the Los Angeles area result primarily
from non-biogenic sources such as hydrocarbon refining and gas
pipelines (Townsend-Small et al., 2012). Significant diurnal variation
in CH4 concentrations has beenmeasured and can result from transport
of CH4 enhanced air from Los Angeles to other regions of the South
Coast Air Basin (Wunch et al., 2009).

Over 1700 inactive or active wells, mostly concentrated in the Salt
Lake and Inglewood Oil Fields, are located in the 70 km2 study site
(DOGGR, 2010a), which was imaged by two sequential AVIRIS flights
(Fig. 2a). Because many of these wells were drilled decades ago and
subsequently abandoned, CH4 leaks arewell documented and primarily
result from improperly sealed wells. There are an estimated 528
improperly sealed wells for the Salt Lake Oil Field alone (Pipkin
& Proctor, 1992). At the InglewoodOil Field, there is activehydrocarbon
extraction, producing approximately 3.1 million barrels of oil (bbl) and
1.5 billion cubic feet (Bcf) of natural gas in 2008 (DOGGR, 2010b).

2.2. AVIRIS data

Flown on aircraft at altitudes ranging between 4 and 20 km,
AVIRIS measures radiance at nadir with a spectral sampling interval
and nominal Full Width Half Maximum (FWHM) of 10 nm, 34° field
ines (r_03, r_04) in Los Angles. (b) First principal component (PC1) for portion of r_04
set.

image of Fig.�2
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of view (FOV), and 1mrad instantaneous field of view (IFOV: Green et
al., 1998). For this study, one AVIRIS scene was acquired for COP at
approximately 19:55 UTC on 19 June 2008 from 8.9 km altitude
(Fig. 2a, s_01), with a solar zenith of 11.4° (high sunglint), ground
IFOV of ~7.5 m, and swath width of ~5.4 km. Two sequential flight
lines were acquired for the Mid-Wilshire and Inglewood neighborhoods
of Los Angeles between 20:57 and 21:20 UTC on 18 September 2008
from 4.0 km altitude (Fig. 2a, r_03 and r_04), with a solar zenith of
38.1°, ground IFOVof ~3 m, and swathwidth of ~2.7 km. AVIRIS radiance
data were georectified and radiometrically calibrated by the Jet Propul-
sion Laboratory (JPL).

The two Los Angeles flight lines were processed to surface reflec-
tance using a techniquedescribed by Roberts et al. (1997). This involved
forward inversion to match AVIRIS radiance with modeled Modtran
radiance while varying column water vapor. Column water vapor esti-
mates were refined, averaging around 1 cm, and a ground reflectance
target was used to reduce reflectance artifacts (Clark et al., 2002). In
order to investigate algorithm performance, radiance and surface reflec-
tance images were used at terrestrial locations for the CTMF analysis. For
COP, the radiance image was used to avoid surface reflectance artifacts
caused by low reflectance and high sunglint.

2.3. Cluster-Tuned Matched Filter

Theiler and Foy (2006) and Villeneuve et al. (1999) demonstrated
that the Simple Matched Filter (SMF) and Clutter Matched Filter
(CMF) could detect simulated gas plumes. To do so, a matched filter
algorithm is trained with a gas target spectrum to generate a linear
weighting function that produces high values when an unknown
spectrummatches the shape of the gas target spectrum and is distinct
from the covariance of the background. The optimal matched filter
calculation uses the inverse of the scene’s covariance structure to re-
move large-scale noise (background clutter) and to isolate the gas
signal. Matched filters assume that the signal does not contribute
substantially to the background scene-wide covariance. Thus,
matched filters are best suited for detecting concentrated sources
rather than elevated background levels present over entire scenes.

The CTMF algorithm was originally developed by Funk et al.
(2001) to detect faint sulphur dioxide (SO2) signatures superimposed
on synthetic thermal images using the absorption coefficient to calculate
the gas target spectrum. This study explored the use of transmittance
since radiance has a linear relationship to transmittance and causes re-
duced radiance with increasing concentration, matching the expected
impact of increased concentration in radiance space. In contrast, an in-
crease in the absorption coefficient translates to a decrease in radiance,
the opposite pattern observed in radiance space in the SWIR.

Originally developed for use with 128 spectral bands between 7.8
and 13.5 micrometers, the CTMF algorithm was modified to permit
use with the 224 AVIRIS bands between 350 and 2500 nm. The CTMF
was designed for weak signal detection and assumes gas plumes are
modeled as a linear superposition of gas signal and background clutter
as shown in the following equation (Eq. 1),

r ¼ u� αbþ ε ð1Þ

where radiance or reflectance (r) can bemodeled as the linear combina-
tion of the mean background radiance or reflectance (u), a gas absorp-
tion term (−αb) that reduces radiance or reflectance in the SWIR, and
ε, which contains both sensor noise and scene clutter. The gas absorption
term contains the gas signal strength (α, a scalar representing the
amount of signal present in a pixel)multiplied by the gas target spectrum
(b), which contains gas absorption features across the 224 AVIRIS bands.
When applying the CTMF to AVIRIS data, atmospheric scattering can be
ignored given it occurs at shorter wavelengths than gas absorptions and
is usually dominated by background clutter variability.
The CTMF was applied to both radiance and reflectance images for
entire AVIRIS flight lines that were first standardized by subtracting
the mean and dividing by the standard deviation of the scene, both
scalar values. A sample-based k-means algorithm using extreme
centroid initialization was usedwith the first fewprinciple components
of the image to assign extreme locations for each of the k-means class
centroids (Funk et al., 2001). For the Coal Oil Point and Los Angeles
radiance scenes, principle components were calculated using all
224 image bands. For the Los Angeles reflectance images, principle
components were calculated using 180 bands that excluded those
characterized by high sensor noise or strong water vapor absorptions.

After the k-means algorithm assigns clusters and creates a k-means
class image, a CTMF specifically tuned for each class was calculated. The
CTMFwas ‘matched’ to both the gas signature aswell as the background
clutter and was calculated using the following equation (Eq. 2),

qj ¼
C−1
j bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bTC−1
j b

q ð2Þ

For class j, qj is the CTMF and represents an n-dimensional vector of
optimal weights, where n is the number of spectral channels. Cj−1 is the
inverted n by n covariance matrix for the jth class and b is the
n-dimensional vector containing the gas target spectrum. T is the trans-
pose operator.

Modtran 5.3 (Berk et al., 1989) was used to generate gas transmit-
tance spectra using default gas concentrations defined by a mid-latitude
summer model with 30 km visibility, 293.15 K boundary temperature,
scattering turned off, and the sensor altitude for each flight line. Modtran
transmittance for CH4 and H2O was convolved to AVIRIS wavelengths
using the band centers and FWHM supplied by JPL. CH4 and H2O trans-
mittance spectra indicating gas absorptions are shown in Fig. 1 for
COP, including both the high resolution and convolved transmittance
shown for CH4 (red) and H2O (blue). For the COP scene, the sensor alti-
tude was set to 8.9 km with total column absorber amounts of
208.77 atm-cm for CO2, 0.913 atm-cm for CH4 and 3615.90 atm-cm
for H2O, approximately 385.01, 1.68, and 6668.34 ppmV respectively.

The sensor altitude was lower for the Los Angeles scenes (4.0 km),
resulting in smaller total column absorber amounts of 117.59 atm-cm
for CO2,, 0.519 atm-cm for CH4 and 3230.10 atm-cm for H2O. Given
CO2 and CH4 are well mixed gasses in Modtran, the estimated 385.00
(CO2) and 1.70 (CH4) ppmV for the Los Angeles scenes are similar to
COP, however, the higher value of 10,575.56 ppmV for H2O results
from decreased path length (lower sensor altitude) and more water
vapor near the surface. Fig. 5 shows CH4 and H2O transmittance spectra
for the Los Angeles scenes with 180 bands excluding those character-
ized by high sensor noise or strong water vapor absorptions that can
cause reflectance artifacts.

These gas transmittance spectra were used to calculate the CH4 and
H2O target spectrum (b) for each scene using the following equation
(Eq. 3),

b ¼ t p s ð3Þ

where the n-dimensional vector t is the standardized gas transmittance
spectrum, which is calculated by subtracting themean of this spectrum
and dividing by the standard deviation. Next, t is scaled by a percentage
(p, gas signal percent) of the standard deviation of the image (s, a scalar
value); p is chosen empirically prior to applying the CTMF algorithm
(see Section 2.4). The CH4 andH2O target spectrumwas used to generate
CH4 and H2O CTMF results for the three AVIRIS images. Given spectral
overlap between CH4 and H2O (Figs. 1 and 5), H2O CTMF results were
used as a means of validating CH4 CTMF results.

In Fig. 3 (top) an example of the CH4 target spectrum (b) is shown
calculated for the COP radiance image using p = 0.002 of the standard
deviation of the image. The CTMF for class j = 1 (qj) is also included



Fig. 3. (Top) CH4 target spectrum for COP scene. (Middle) CTMF for one class. (Bottom)
Standardized radiance spectrum for an ocean pixel containing sunglint within the class.
Vertical lines indicate locations of strong CH4 absorptions at 2198, 2318, and 2368 nm.

Fig. 4. For radiance (or reflectance) in two spectral channels, background clutter of the
scene is shown as open circles and one pixel with gas signal added (decrease in Band 1
due to absorption) as filled red circle. (a) Projection of data cloud containing all pixels
(dark andbright) by the ClutterMatched Filter (CMF) so that thepixelwith the added signal
will bemost readily detected, but does not stand out as highly significant. (b) Projected data
for only dark pixels using the Cluster-Tuned Matched Filter (CTMF) technique, resulting in
the pixel with added gas signal standing out as highly significant.

Fig. 5. (Top) CH4 and H2O transmittance spectra excluding bands with strong water
vapor absorptions for the Los Angeles scenes generated usingModtran 5.3 parameterized
for a mid-latitude summer model atmosphere and 4.0 km sensor altitude. Transmittance
is shown in high resolution for CH4 (light red) and H2O (light blue) and convolved to
AVIRISwavelengths for CH4 (dark red)H2O (dark blue). (Bottom) SWIR region. (For inter-
pretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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(Fig. 3, middle) with strong CH4 absorptions indicated by vertical lines.
An example of a standardized radiance spectrum for an ocean pixel
containing sunglint (ri for the ith pixel within this class) is shown in
Fig. 3 (bottom).

Next, a CTMF score for ith pixel within the class (fi) was calculated
by multiplying the transpose of the CTMF (qj) by each standardized
image spectrum within the class (ri, for radiance or reflectance), as
shown in the following equation (Eq. 4),

fi ¼ qT
j ri ð4Þ

Resulting from the combined operations of Eqs. (2) and (4), multi-
plication by the inverted covariance matrix in the numerator in
Eq. (2) ‘whitens’ the data, removing spectral cross-correlation in the
background clutter. The denominator standardizes the filter so that
the CTMF image will have a variance of 1 when the signal is absent.

The CTMF score for each pixel within a class is standardized by
subtracting the mean CTMF score for the class and dividing by the
standard deviation of the class. This results in a mean CTMF score of 0
and standard deviation of 1 for the class; the standardization procedure
continues for all j classes. Filtered pixels are then recomposed as a final
output image that reduces noise and sensitivity to surface features
while enhancing the gas signature.

When interpreting the CTMF image, scores greater than one indicate
evidence of the gas signature, which can be quantified by the ‘number of
sigmas’ for the z distribution. However, sigmas only can be interpreted
as literal probabilities if the background clutter is Gaussian (Funk et al.,
2001). Because a CTMF specifically tuned for each k-means class is used,
high CTMF scores for pixels from different k-means classes that appear
as contiguous pixels in CTMF images can be interpreted as highly signif-
icant. These contiguous pixels represent gas anomalies that cross over
multiple land cover types and can be evaluated for consistency with
known or probable emissions sources and local wind direction.

The example shown in Fig. 4 illustrates some of the challenges in
detecting a gas signal over heterogeneous surfaces. For radiance or
reflectance measured in two spectral bands, pixels representing the
scene background clutter are shown as open circles and one pixel
with gas signal added (Band 1 decrease due to absorption in this

image of Fig.�3
image of Fig.�4
image of Fig.�5
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band) is included as a filled red circle. Fig. 4a shows a projection of
the data cloud containing all pixels by the Clutter Matched Filter
(CMF) so that the pixel with the added gas signal will be most readily
detected, but the pixel containing the gas signal does not stand out as
highly significant. In Fig. 4b, the background clutter is first partitioned
into two clusters consistent with two classes of surface materials,
brighter pixels in the upper right and darker pixels in the lower left.
The Cluster-Tuned Matched Filter (CTMF) is applied to the dark pixel
cluster and the projected data for only darker pixels causes the pixel
with added gas signal to stand out as highly significant. By classifying
an image using k-means clustering and reducing within-class variance,
a CTMF should improve performance over traditionalmatched filters by
creating amatched filter that is specifically tuned for each cluster (Funk
et al., 2001).

2.4. Input parameters for Cluster-Tuned Matched Filter

Two factors govern the performance of the CTMF — the number of
clusters identified and the gas signal percent (p), which scales the gas
transmittance spectrum by a percentage of the standard deviation of
the image (Eq. 3). To determine an appropriate number of clusters for
the k-means algorithm, a key objective is to maximize the number of
clusters needed to discriminate land cover classes and reduce within-
class variance, while maintaining enough pixels in each cluster to
ensure adequate sample size and that the variance in the gas signal
remains less than the variance of the image clusters. This is particularly
important given that the CTMF calculation (Eq. 2) explicitly removes
the background clutter, assuming that the gas signal is independent.
In this study, the number of clusters was increased iteratively while
maintaining a minimum of 1000 pixels in each cluster, resulting in 36
clusters for the entire COP scene.

For the COP scene, the CH4 signal percent (p) was determined
empirically by varying the scalar between 0.0001 and 1.00 using
the 36 cluster k-means result. A visual comparison between results
obtained using extreme values showed appreciable differences, but
it became difficult to distinguish between the remaining results.
Overall, a CH4 signal percent of 0.002 produced anomalies that
appeared the most clearly defined.

Radiance images were initially used for the Los Angeles scenes,
however, CTMF anomalies were more clearly defined using the surface
reflectance images due to improved classification of the heterogeneous
urban environment by the k-means algorithm. For flight line r_04,
k-means class images generated for different numbers of clusters
were analyzed and indicated that 321 clusters maximized the number
of clusters while maintaining cluster size above 1000 pixels for the
surface reflectance image. The CH4 signal percent was varied between
0.0001 and 1.00, but identifying the optimal result remained challenging
so 0.002 was used for consistency with the COP example.

2.5. Segmentation and classification

In order to reduce noise and isolate contiguous pixels with high
CTMF scores, a segmentation approach based on 8-connectivity was
used by defining a score threshold and minimum number of pixels for
the segments. An iterative processwas used todetermine the appropriate
threshold andminimumpopulation that preserved regions of contiguous
pixels without resulting in toomany small segments. Next, a mask of the
segments was applied to the reflectance scene, resulting in an image that
contained reflectance spectra only for segmented regions.

To distinguish true CH4 anomalies from false positives, reflectance
spectra from the segmented regions were classified using MESMA
(Multiple-Endmember Spectral Mixture Analysis: Roberts et al., 1998).
MESMA is particularly well suited for the spectral diversity of urban en-
vironments because it permits the number and types of endmembers to
vary on a per-pixel basis (Roberts et al., 2012). ‘Viper-tools,’ anENVI add
on (www.vipertools.org), was used to generate the spectral library that
was used in the classification.

A spectral library was generated from endmembers obtained in the
field using an Analytical Spectral Device (ASD Inc., Boulder, Colorado)
full range spectrometer that samples between 350 and 2500 nm and
image endmembers from the AVIRIS scene. The Endmember Average
Root Mean Square Error (EAR) method was utilized to optimize the
endmembers for the spectral library by creating the smallest number
of spectra for each land cover class while maximizing the separation
between surfaces (Dennison & Roberts, 2003). EAR uses MESMA to
calculate the average error for a given endmember in modeling spectra
within a land cover class; endmembers with lower within class average
root mean square error (RMSE) are representative endmembers for a
given land cover class. Endmembers were organized into two MESMA
classes: surfaces prone to false positives (confusers) and probable CH4

anomalies. These endmembers were used to unmix the segmented re-
flectance image and generate a classification image indicating which
anomalies are probable CH4 anomalies or likely false positives.

3. Results

3.1. Cluster-Tuned Matched Filter

3.1.1. Coal Oil Point
CTMF results obtained using 36 clusters and a CH4 signal percent

of 0.002 produced anomalies with a maximum CTMF score of 43.8
(positive values as CH4 anomalies), minimum of −48.5, mean of
0.0, and standard deviation of 1.0 for the entire COP radiance image.
A subset of CTMF results is shown in Fig. 6d for a region of high
sunglint as well as dark ocean pixels, with a maximum radiance mea-
sured in uWcm−2 sr−1 nm−1 at 2100 nmof 6.466 (sensor saturation),
minimum of 0.026 (0% reflectance), and mean of 2.779 (95.7% reflec-
tance) within the image subset. In Fig. 6d, high CTMF scores represent
large sigma values that indicate rotated pixels that are far from the
expected value of 0 (Fig. 4b) and are very likely to contain elevated
CH4 concentrations. Bright pixels clearly indicate positive CH4 anomalies
consistent with a southwesterly wind measured at the nearby West
Campus Station (2.3 m s−1 from 236°).

These anomalies emanate from known seeps, including the Trilogy
Seep (TRI), IV Super Seep (IV), and Horseshoe Seep (HS), as shown by
sonar return contours of subsurface bubble plumes in Fig. 6a (Leifer
et al., 2010). These CH4 anomalies also closely resemble results
obtained using the AVIRIS CH4 index, ζ (L2298 / L2058), developed by
Bradley et al. (2011). In Fig. 6b, AVIRIS CH4 index results for the same re-
gion are shown, with elevated CH4 indicated by lower values (dark
pixels) caused by reduced radiance in the numerator (L2298) due to in-
creased absorption by CH4 relative to CO2 absorptions (L2058). In Fig. 6c,
CTMF results for water vapor show no H2O anomalies, indicating the
anomalies present in Fig. 6d are due to CH4. Using visual assessment,
we verified that CH4 anomalies were not present in any of the principal
components of the AVIRIS scene and have included the first principal
component of the subset in Fig. 6a.

3.1.2. Los Angeles
For the entire reflectance scene for flight line r_04, the CTMF

image had a maximum score of 17.0, minimum of -17.0, mean of 0.0,
and standard deviation of 1.0. The CTMF algorithm was also applied to
scene r_03using input parameters previously defined for r_04, resulting
in amaximum score of 16.9 andminimumof−13.8. CTMF results indi-
cate a number of well defined CH4 anomalies coinciding with locations
of knownor probable CH4 emission sources. For the overlapping portion
of scene r_03 and r_04 (Fig. 2), the location of well defined CH4

anomalies remained consistent in CTMF results from either scene.
Visual assessment was used to verify that CH4 anomalies were not
present in principal components of the scene and results compared
with CTMF results for water vapor as an additional means of validation.

http://www.vipertools.org


Fig. 6. (a) PC1 for COP subset shown in Fig. 2c overlain with sonar contours (Leifer et al., 2010) indicating known seeps, including the Trilogy Seep (TRI), IV Super Seep (IV), and
Horseshoe Seep (HS). (b) AVIRIS CH4 index, ζ (L2298 / L2058), indicating elevated CH4 (dark pixels) corresponding with known seep locations. (c) For the same region, CTMF results
for water vapor show no H2O anomalies. (d) CTMF results for CH4 with positive values denoting CH4 anomalies (bright pixels) consistent with results obtained using CH4 index.
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For this studywe focus on image subsets containing themost prominent
anomalies located at the Inglewood Oil Field and near the La Brea Tar
Pits.

The first area of interest is located at the southern edge of the
Inglewood Oil Field (Fig. 2b, Inglewood subset). For scene r_04, the
true color subset shown in Fig. 7a has a maximum surface reflectance
Fig. 7. (a) Inglewood subset shown in true color (RGB) for flight line r_04. (b) For the same
shown in b and e, the class and CH4 CTMF score for each pixel is shown, indicating that the
show no H2O anomalies. (e) CTMF results for CH4 with positive values denoting CH4 anom
of 47.6%, minimum of 3.3%, and mean of 26.7% measured at 2100 nm.
For the same region, a plume-like feature is clearly visible in the CTMF
result for CH4 (Fig. 7e)while the k-means class image (Fig. 7b) indicates
that the anomalies cross over multiple classes and thus different land
cover types, including soil as well as green and non-photosynthetic
vegetation. This is more clearly emphasized in Fig. 7c, where the
region, k-means class image indicates numerous land cover classes. (c) Along transects
CH4 anomalies cross over multiple land cover classes. (d) CTMF results for water vapor
alies (bright pixels).
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k-means class is plotted for each pixel along the transect shown in
Fig. 7b. For the same transect shown in Fig. 7e, the CH4 CTMF results
are best fit using a robust Gaussian curve (Matlab Curve Fitting Toolbox,
Mathworks, Natick, Massachusetts). CTMF results for H2O are shown in
Fig. 7d and indicate no H2O anomalies in the image subset.

Two AVIRIS flight lines were acquired over this location approxi-
mately 6.5 min apart and CH4 anomalies clearly change between the
earlier scene, r_03 (Fig. 8b), and the later scene, r_04 (Fig. 8d). For
presentation, CTMF results are provided for both scenes using a median
filter with a 2 by 2 pixel kernel (Fig. 8b and d, left), while the original
results are displayed with identical transects (T1 and T2 in Fig. 8b
and d, right). To compare changes in the anomalies between scenes,
CH4 CTMF results for transects were best fit using robust Gaussian
curves. Transect 1 (T1 in Fig. 8c) crosses a portion of the scene with
the highest CTMF scores and comparison of best fit curves indicates
the anomalies in the later scene (r_04) exhibits a greater amplitude and
extent (R2 = 0.89, RMSE = 1.10) than r_03 (R2 = 0.78, RMSE = 0.89).

In Fig. 8d, Transect 2 (T2) first crosses over the southern edge of the
observed CH4 anomalies, next a stand of trees, and finally a region
where CTMF scores appear to gradually decrease. Fig. 8e shows a second
order fit for Transect 2 of r_04 (R2 = 0.54, RMSE = 1.30), with values
greatest towards the southwest, markedly decreasing in the vicinity of
the trees, and gradually decreasing to the northeast. This is consistent
with local meteorological data indicating a 2.2 m s−1 southwesterly
wind at the time of image acquisition (weatherunderground.com,
2012). It is unclear whether the trees are obscuring the CH4 signal due
to liquid water absorption and low reflectance in the SWIR, or if the
spatial patterns are the result of an intermittent release. Transect 2
for r_03 was modeled with a first order Gaussian fit (R2 = 0.54,
RMSE = 0.88), clearly indicating significant change in the plume
profile during the 6.5 min between the two flight lines. This is con-
sistent with a gas plume rather than a stationary surface material
causing a false positive. Google Earth imagery from 14 November
2009, acquired one year after the AVIRIS flights, was used to resolve
surface features, including what appears to be two hydrocarbon
Fig. 8. (a) Inglewood subset shown in true color with close-up of hydrocarbon storage tank
positive values denoting CH4 anomalies for flight line r_03. Left, using median filter with 2
r_04, identical transects are shown on the right. (c) Results for Transect 1 (T1) were best fit
r_03, with 1st order fit, and r_04, with a 2nd order Gaussian fit.
storage tanks located immediately upwind of the anomalies (Location
L1 in Fig. 8a: Google Earth, 2012). Given the CH4 plume is likely near
the surface, the changing appearance between scenes cannot be
explained by differing view geometries, which would cause a small
spatial shift rather than a significant change in the shape of the
anomalies.

Eight kilometers north of the Inglewood subset, several CH4

anomalies are observed in the region surrounding the La Brea Tar
Pits (Fig. 2b, Mid-Wilshire subset). A subset of the scene is shown in
Fig. 9a, with a maximum surface reflectance of 53.8%, minimum of
0.3%, andmean of 14.1%measured at 2100 nmwithin the image subset.
Prominent CH4 anomalies are visible on the eastern edge of the La Brea
Tar Pits, a hydrocarbon and water mixture known to produce large CH4

bubbles tens of centimeters in diameter (Fig. 9e, Location L1). On the
opposite corner ofWilshire Boulevard andCursonAvenue, CH4 anomalies
are located in a courtyard bounded by two multi-story office buildings
(Fig. 9e, Location L2). These buildings are documented as continuously
venting CH4 (Chilingar & Endres, 2005). The CH4 appears to accumulate
in the courtyard, where it would be almost completely surrounded by
the six-story office complex. These anomalies extend through the north
entrance of the courtyard, remain faintly visible immediately north of
the office complex, and are consistent with CH4 advection by south-
westerly winds.

Closer inspection of CH4 CTMF results indicates the courtyard
anomalies cross over multiple k-means classes (Fig. 9b), including im-
pervious and green vegetation land cover types. This is clearly indicated
in Fig. 9c by comparing the k-means class for each pixel along the tran-
sect shown in Fig. 9b. CH4 CTMF scores for the same transect are also
shown and indicate elevated values to the northeast. While prominent
CH4 anomalies are located at a known source at the La Brea Tar Pits and
probable region of elevated CH4 in the courtyard, CTMF results forwater
vapor do not indicate H2O anomalies at these locations (Fig. 9d).

Continuous air samples were collected between 3:00 and 4:00 LT
on 22 February 2012 using a cavity ring-down greenhouse gas sensor
(G2301, Picarro, Santa Clara, California: Farrell et al., 2013) to
s (Location L1) from 14 Nov. 2009 (Google Earth, 2012). (b) CTMF results for CH4 with
by 2 pixel kernel and on right, original results. (d) CTMF results for r_04. For r_03 and
using robust 1st order Gaussian curves. (e) Transect 2 (T2) varies significantly between
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Fig. 9. (a) Mid-Wilshire subset for flight line r_04 shown in true color. (b) For the same region, the k-means class image indicates numerous land cover classes. (c) Along transects
shown in b and e, the class and CTMF score for each pixel is shown, indicating that the CH4 anomalies cross over multiple land cover classes. (d) CTMF results for water vapor show
no H2O anomalies. (e) CTMF results for same area with positive values denoting CH4 anomalies. Location 1 (L1) indicates eastern edge of La Brea Tar Pits, a known CH4 source, and
Location 2 (L2) a courtyard bounded by a multi-story office complex with continuous CH4 venting.
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characterize CH4 emissions for the region surrounding the La Brea Tar
Pits. In Fig. 10, CH4 measurements are shown for a region similar to the
Mid-Wilshire subset shown in Fig. 9, with concentrations between
3.066 ppm and 45.508 ppm with a mean of 6.44 ppm. Winds were
calm at the time of sampling and measurements near the courtyard’s
south entrance show an approximately Gaussian shape with a
45.508 ppm maximum. This is consistent with CH4 accumulating in
the courtyard from continuous CH4 venting by the office complex and
escaping through the courtyard’s south entrance. These results can be
compared with CH4 anomalies shown in Fig. 9e that extend through
the courtyard’s north entrance and are consistent with CH4 advection
Fig. 10. In situ CH4 measurements near the La Brea Tar Pits (2 s time average) indicate
concentrations between 3.066 and 45.508 ppm for this scene subset (Google Earth,
2012). A pronounced increase in concentration occurs immediately south of the office
complex with peak measurements near the south entrance of the courtyard.
by 2.2 m s−1 southwesterly winds when the AVIRIS image was ac-
quired on 18 September 2008.

3.2. Noise and false positives

CTMF results consistently appear noisy and attempts to reduce
‘speckle’ by varying input parameters, such as the number of clusters
and CH4 signal percent, were largely unsuccessful. As a means of
optimizing results, Moran's Spatial Statistics were used to assess
local homogeneity (Cliff & Ord, 1981), but values remained nearly
identical despite varying both the number of clusters and the CH4

signal percent. TheMoran's index appears primarily influenced by noise
and false positives present in CTMF results, rather than subtle variations
in CH4 anomalies.

Although well defined anomalies located at and downwind from
knownor probable CH4 sourceswere identified, apparent false positives
also occurred and result from surfaces with strong absorptions at the
same wavelengths as CH4. In Fig. 11, reflectance spectra for surfaces
prone to false positives (confusers) are shown (Spectra S2 through
S11) indicating SWIR absorptions consistent with those present in
CH4 transmittance spectrum S1. Confusers included oil-based paints
(S2 through S6) and a number of roofs exhibiting a strong absorption
feature for calcite (CO3) at 2338 (Fig. 11, S7).

Apparent false positives generally appeared as contiguous pixels
with a shape that mimics an underlying surface feature, for example
individual rooftops within CH4 CTMF results. This suggests that the
AVIRIS spectral resolution limits the ability of the CTMF algorithm
to accurately resolve between a pure CH4 signature and land cover
types with strong absorption features between 2200 and 2500 nm.
Despite this, the percentage of pixels within each k-means class
exhibiting high CTMF scores remained small across classes, for example
0.01 to 1.27% of pixels within each class exhibited scores greater than 3
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Fig. 11. Reflectance spectra for surfaces prone to false positives (confusers) are shown
(Spectra S2 through S11) indicating absorptions consistent with those present in CH4

transmittance spectrum S1. Absorptions between 2048 and 2467 nm for oil-based paints
(S2 through S6) and at 2338 nm for calcite (S7) explain false positive characterization.

Table 1
Classification results of segmented reflectance image for flight line r_04 indicating land
cover categories for two MESMA classes: probable CH4 anomalies and confusers.

MESMA class Land cover categories Number
pixels

Percent in
segmented image

Probable CH4
anomalies

Impervious
(concrete, brick, tile, etc.)

460 34.56

Non-photosynthetic vegetation 187 14.05
Green vegetation 170 12.77
Soil 95 7.14

Confusers Unknown composition 186 13.97
Hydrocarbon/water mixture 102 7.66
Oil-based paints 80 6.01
Calcite 44 3.31
Asphalt 7 0.53

Unclassified pixels 0 0.00
Total pixels in
segmented
image

1331 100.00
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for Los Angeles scene r_04. One class containing shade pixels had a
higher value of 2.40% suggesting a slight bias towards dark surfaces,
however no systematic bias towards the remaining classeswas observed.

3.3. Segmentation and classification

In order to reduce noise and isolate CH4 anomalies for Los Angeles
scene r_04, segmentation using a CTMF score threshold greater than
1.5 and minimum population size of 55 pixels (~500 m2) resulted in
16 segments totaling 1331 pixels (0.04% of the original pixels within
the AVIRIS scene). To distinguish true CH4 anomalies from false posi-
tives, reflectance spectra from the segmented regions were classified
using MESMA. From a spectral library containing 1089 field spectra
obtained between 23 May and 25 June 2001 for the Santa Barbara
urban area (Herold et al., 2004), spectra with the lowest 2 or 3 EAR
scores for each of the 58 land cover classes were selected. The resulting
164 field spectra then were used to unmix the segmented reflectance
scene using a two endmembermodel consisting of a bright endmember
and photometric (spectrally flat) shade, fractional constraints between
0 and 100%, and a root mean square error (RMSE) constraint below
5.0%.

Portions of the segmented reflectance image remained unclassified,
so image endmembers were used to supplement the spectral library.
Regions of interest (ROIs) were created in the original reflectance
image and located outside those areas defined by the segmented reflec-
tance image. For eachROI, the spectrumwith the lowest EARwas added
to the spectral library as an image endmember. In a few instances,
appropriate endmembers could not be found outside of segmented
regions so spectra obtained within segments were used. For example,
accurate classification of the hydrocarbon and water mixture of the La
Brea Tar Pits (Fig. 11, S11) only was possible by choosing endmembers
at this location. Similarly, image endmemberswere selected for suspected
false positives caused by three surfaces of unknown composition with
strong absorptions in the SWIR: a blue awning (likely a painted metal
surface), a running track (likely a rubberized material), and what ap-
pears to be plastic sheeting used as an erosion barrier (Fig. 11, S4, S8,
and S9 respectively).
These field spectra and image endmembers then were organized
into two MESMA classes: confusers and probable CH4 anomalies. A
complete list of land cover categories for either class is shown in
Table 1, with surfaces prone to false positives (confusers) including
oil-based paints, calcite, and surfaces of unknown composition (blue
awning, running track, and erosion barrier). Fresh asphalt is another
likely confuser, with possible hydrocarbon absorptions in the SWIR
resulting from tar. Therefore, the La Brea Tar Pits, a hydrocarbon and
water mixture with fresh tar visible on the surface, was included as a
potential confuser. The remaining land cover categories were included
in the probable CH4 anomalies class andmade up of impervious surfaces
not prone to false positives, green and non-photosynthetic vegetation,
and soils.

These spectra were then used to unmix the segmented reflectance
image resulting in a classification using 109 successful models. Field
spectra and image endmembers that modeled only a small portion
of the scene were removed, reducing the library to 93 spectra. This
final spectral library was used to unmix the scene and generated a
classification image with 0 unclassified pixels.

The classification of the segmented reflectance image for the
Inglewood subset is shown in Fig. 12b, with confusers indicated in red
and probable CH4 anomalies in green. This region is composed of
surfaces that make up the probable CH4 anomalies class, including soil
aswell as green and non-photosynthetic vegetation, while no confusers
were detected. In Fig. 12c, CH4 CTMF scores are displayed with highest
scores in orange (greater than 3.5), intermediate values as yellow (2.5
to 3.5), and low scores in cyan (1.5 to 2.5). This indicates true CH4

anomalies consistent with southwesterly winds and emission from or
near the hydrocarbon storage tanks located at L1 in Fig. 8a. For refer-
ence, the original reflectance image for the same subset is included in
Fig. 12a. For the segmented portion shown in Fig. 12c, surface reflec-
tance measured at 2100 nm had a maximum of 41.6%, minimum of
3.9%, and mean of 25.2%.

To classify the La Brea Tar Pits, it was necessary to select image
endmembers directly from this location, which were included in the
confusers class due to the presence of oil and tar. As a result, the
anomalies at the eastern edge of the La Brea Tar Pits mostly are classi-
fied as confusers (Fig. 12e). Oil and fresh tar have SWIR absorption fea-
tures that could cause false positives in CTMF results, however, CH4

bubbles tens of centimeters in diameter also are present at this location.
Accordingly, these anomalies are likely caused by combined absorption
features resulting from CH4 gas and liquid hydrocarbons.

Most of the courtyard anomalies appear as the probable CH4

anomalies class and mainly include impervious surfaces like brick and
pavement as well as green vegetation (Fig. 12e). However, confusers
do exist along the edge of the heavily shaded portion of the courtyard,
including calcite, asphalt, aswell as green andwhite paint endmembers.
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Fig. 12. True color subsets, classification results of segmented reflectance images, and CH4 CTMF scores are displayed for flight line r_04. (a, b, c) Inglewood subset. (d, e, f)
Mid-Wilshire subset. (g, h, i) Subset with contiguous pixels classified as endmembers from the confusers class, indicating segment is a likely false positive.
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Because the classificationwas limited to two endmembermodels, these
are likely the result of mixed pixels that weremisclassified as confusers.
Therefore, elevated CH4 CTMF scores in the courtyard likely represent
true CH4 anomalies and are consistent with continuous CH4 venting
by the surrounding office complex and the very elevated CH4 concen-
trations up to 45.508 ppmmeasured at the south courtyard entrance.

For the segmented portion shown in Fig. 12f, surface reflectance had
a maximum of 31.6%, minimum of 0.4%, and mean of 8.9% measured at
2100 nm. Most of the anomalies at the La Brea Tar Pits occur for dark
spectra (around 5% reflectance at 2100 nm) compared to the consider-
ably brighter surfaces that make up the courtyard. Therefore, the CTMF
technique is capable of detecting CH4 anomalies across a wide range of
surface reflectance.

Fig. 12h provides the classification result for an image subset located
approximately 1.0 km north of the La Brea Tar Pits. The confusers
classification includes contiguous pixels corresponding to the blue
awning in Fig. 12g, which likely is a paintedmetal surface with strong
SWIR absorptions (Fig. 11, S4). In this example, it appears that many
pixels classified as probable CH4 anomalies may result from poor
modeling ofmixed pixels using two endmembermodels. Examining re-
flectance spectra adjacent to pixels classified as confusers reveals strong
absorption features similar to those present in the confusers pixels. This
is consistent with an edge effect caused by mixed pixels and indicates
this segment is a likely false positive. In a different location, a similar
edge effect was observed formixed asphalt pixels, which systematically
exhibited high CH4 CTMF scores.

A summary of classification results of the segmented reflectance
image r_04 are presented in Table 1. For the probable CH4 anomalies
class, the impervious land cover category made up 460 pixels
(34.56%) of the total 1331 pixels within the segmented scene, followed
by non-photosynthetic vegetation (14.05%), green vegetation (12.77%),
and soil (7.14%). For the confusers class, 13.97% of the scene was of un-
known composition and classified using image endmembers from the
blue awning, running track, and erosion barrier. Image endmembers
from the hydrocarbon/water mixture were used to classify the La Brea
Tar Pits (7.66% of the scene), while the remaining land cover categories
for the confusers class included oil-based paints (6.01%), calcite (3.31%),
and asphalt (0.53%). Of the total 1331 pixels within the segmented
scene, 68.52% of pixels were classified as endmembers corresponding
to the probable CH4 anomalies class and 31.48% as the confusers class.

4. Discussion

The observed CH4 anomalies for COP and the Mid-Wilshire neighbor-
hood of Los Angeles suggest significant natural CH4 seepage in these re-
gions. COP is one of the largest natural marine seeps in the world, with
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total atmospheric CH4 emissions estimated at 100000 m3/day (Hornafius
et al., 1999). The Mid-Wilshire area has well documented CH4 seepage,
including CH4 bubbles in the La Brea Tar Pits, CH4 gas bubbling
from between cracks in paved surfaces after rains (Gurevich et al.,
1993), and additional building codes requiring CH4 mitigation such
as gas detectors in addition to active and passive venting systems
(Chilingar & Endres, 2005). The CTMF technique shows promise for
detecting CH4 fromnatural geological seepage, which contributes an es-
timated 30 Tg CH4 year−1 globally to the atmosphere from marine
seepage (Kvenvolden & Rogers, 2005) and between 20 and 40 Tg CH4

year−1 for natural terrestrial seepage (Etiope et al., 2009).
The CTMF approach also demonstrates potential for detection of

fugitive CH4 emissions, a term describing largely unmonitored CH4

releases associated with petroleum production and industrial processes
that are poorly constrained (Howarth et al., 2011). CH4 anomalies consis-
tentwith fugitive emissionswere detected at the InglewoodOil Field im-
mediately downwind of two hydrocarbon storage tanks. Storage tanks
are a major source of CH4, emitting an estimated 212 Gg for the United
States in 2009 (EPA, 2011). North American natural gas storage tanks
have an emission factor of between 4.3 and 42.0 × 10−4 Gg CH4 per
(106) m3 gas withdrawals per year (IPCC, 2000) and condensate tank
batteries have been documented to emit between 141 and 14158 m3

natural gas and light hydrocarbon vapors each day (EPA, 2010).
For the Los Angeles Basin, CH4 emissions are poorly constrained

and statewide inventories appear to underestimate urban CH4 emis-
sions (Wunch et al., 2009). Natural CH4 seepage is well documented
in this region (Chilingar & Endres, 2005) and there are a number of
potential sources of fugitive emissions. These include natural gas
pipelines, the Inglewood Gas Plant, improperly sealed wells (Pipkin
& Proctor, 1992), the Playa del Rey Oil Field which is currently being
used for natural gas storage (Chilingar & Endres, 2005), as well as a
number of refineries in the El Segundo neighborhood and near the
Port of Long Beach. Isotopic analysis by Townsend-Small et al. (2012)
indicates the majority of CH4 emissions in Los Angeles are from fossil
fuel sources, including natural seepage from geological formations as
well as fugitive emissions. Therefore, the combination of airborne
imaging spectrometry and the CTMF technique offers the potential
to detect concentrated natural and fugitive emissions in areas
where sources may be unknown or poorly quantified.

Significant CH4 sources have been documented by Farrell et al.
(2013) across much of the Los Angeles Basin, while the lowest values
were located in the coastal Rancho Palos Verde area (1.993 ppm) and at
the base of the San Bernadino Mountains. All concentrations in the Los
Angeles Basin were elevated compared to the Mojave Desert, where
average values were 1.860 ppm. Particularly high concentrations were
observed near the La Brea Tar Pits (45.508 ppm), Marina del Rey
(4.740 ppm), and at the Port of Long Beach (3.676 ppm) near a number
of hydrocarbon storage tanks. These high concentrations suggest that
unaccounted natural CH4 seepage and fugitive emissions in the
‘bottom-up’ California Air Resources Board (CARB) emissions inventory
might explain some of the discrepancy between the CARB estimate of
3.0 MMT CO2 E year−1 and the ‘top-down’ estimate of 4.2 MMT CO2 E
year−1 by Hsu et al. (2010).

Water vapor has absorption features in the SWIR, but cannot ac-
count for any of the observed CTMF anomalies for CH4. In this
study, CH4 and H2O transmittance spectra with distinct absorptions
across AVIRIS bands (Fig. 5) were used independently to generate
CTMF results for CH4 and H2O. Although elevated water vapor levels
could be co-located with CH4 at all locations, CTMF results for water
vapor indicate no contiguous H2O anomalies at any location within
the examined AVIRIS scenes.

CTMF results included a number of false positives that resulted from
surfaces with strong absorptions similar to CH4 absorption features, in-
cluding oil-based paints and calcite. False positives generally appeared
as contiguous pixels with a spatial shape that mimicked an underlying
surface feature, for example individual rooftops. This suggests that the
AVIRIS spectral resolution limits the ability of the CTMF to accurately re-
solve between a pure CH4 signature and land cover types with strong
absorption features between 2200 and 2500 nm.

For AVIRIS scene r_04, a segmentation approach was used to reduce
‘speckle’ and isolate contiguous pixels with high CTMF scores, resulting
in 16 segments. By applying a MESMA classification to reflectance
spectra from these segments, segments were assigned to either a
probable CH4 anomalies or confusers class. As a result, anomalies located
in close proximity to hydrocarbon storage tanks and in the office court-
yard were assigned as true CH4 anomalies. Despite being classified
mostly as the confusers class, anomalies at the eastern edge of the La
Brea Tar Pits were likely caused by absorption features resulting from
the combination of CH4 gas, oil, and tar present at this location.

While the CTMF approach is well suited for detecting anomalies, it
does not provide concentrations necessary to calculate fluxes or generate
maps of gas concentrations. However, a sensitivity analysis using
synthetic images and Modtran 5.3 radiative transfer simulations
currently is under development to determine the relationship between
CTMF scores and CH4 concentrations aswell as theminimumdetectable
gas concentrations. This will permit a greater understanding of the
limitations of the CTMF technique, including what types of emissions
might go undetected. Residual based techniques using radiative
transfer simulations are also being investigated as a means of quan-
tifying gas concentrations (Dennison et al., 2011; Roberts et al.,
2010). Evaluating the accuracy of these concentrations is an important
prerequisite for creating maps of gas concentrations and estimating
fluxes from individual point sources to better constrain regional
emissions.

Given the high radiative forcing per CH4 molecule and an abundance
of point sources, targeting reductions in anthropogenic CH4 is a particu-
larly efficient means of mitigating its effects. High resolution mapping
could permit emissionmonitoring fromanthropogenic sources including
wastewater treatment facilities, landfills, fossil fuel production, aswell as
sources of increasing concern like fugitive CH4 emissions from leaking
natural gas pipelines (Murdock et al., 2008) and hydraulic fracturing
(Howarth et al., 2011). Recently, there has been concern over possible
positive feedbacks between increased surface temperature and CH4 re-
leased at high latitudes by melting permafrost (Woodwell et al., 1998),
subsea permafrost (Shakhova et al., 2010), and from CH4 hydrate desta-
bilization (Kvenvolden, 1988). Therefore, developing remote sensing
techniques to detect local emissions for terrestrial and marine environ-
ments could be particularly useful in monitoring potential increases in
CH4 emissions resulting from global warming.

5. Conclusions

High spatial resolution mapping of CH4 over marine and terrestrial
emission sources was performed using a CTMF technique applied to
AVIRIS data. Prominent anomalies consistent with CH4 emission from
sonar-quantified seep bubble locations in the Coal Oil Point seep field
were detected in addition to multiple anomalies located at known or
probable emission sources in Los Angeles. The combined operations of
segmentation of CTMF results followed by MESMA classification
provides a means of semi-automatically discriminating between
true CH4 anomalies and false positives. Given that the CTMF results
were quite consistent despite variations in input parameters, this tech-
nique is particularlywell suited for application over large areas to detect
CH4 emissions from concentrated point sources.

With little modification, the CTMF algorithm could permit detection
of additional greenhouse gasses with distinct absorption features, in-
cluding CO2 and N2O (Dennison et al., 2013; Thorpe et al., 2012). The
next generation AVIRIS sensor (AVIRISng) should be better suited for
gas detection given it has a 5 nm spectral sampling and an improved
signal-to-noise ratio (Hamlin et al., 2011). Further, proposed missions
with AVIRIS-like sensors mounted on satellites including HyspIRI,
EnMAP, Prisma, HYPXIM, and HISUI may be well-suited for detecting
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emissions and could greatly improvemapping of regional emissions due
to its high areal coverage and potential for repeat temporal coverage.
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