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Abstract—Next-generation orbital imaging spectrometers will
generate unprecedented data volumes, demanding new methods
to optimize storage and communications resources. Here we
demonstrate that onboard analysis can excise cloud-contaminated
scenes, reducing data volumes while preserving science return.
We calculate optimal cloud screening parameters in advance,
exploiting stable radiometric calibration and foreknowledge of
illumination and viewing geometry. Channel thresholds expressed
in raw instrument values can then be uploaded to the sensor
where they execute in real time at Gigabit per second (Gb/s) data
rates. We present a decision theoretic method for setting these
instrument parameters, and characterize performance using a
continuous three-year image archive from the “classic” Airborne
Visible / Infrared Imaging Spectrometer (AVIRIS-C). We then
simulate the system onboard the International Space Station
(ISS), where it provides factor of two improvements in data
volume with negligible false positives. Finally, we describe a
real-time demonstration onboard the AVIRIS Next Generation
(AVIRIS-NG) flight platform during a recent science campaign.
In this blind test, cloud screening performed without error while
keeping pace with instrument data rates.

Index Terms—Imaging Spectroscopy, Lossy Compression,
Cloud Screening, Pattern Recognition, Real Time Systems

I. INTRODUCTION

UTURE NASA Earth science missions will face unprece-

dented data volumes. Data product sizes and produc-
tion rates have increased steadily thanks to improvements
in detector, optics, and onboard data handling technology.
High resolution spectrometers such as NASA’s OCO-2 mission
will yield over one million soundings per day [1]. Proposed
imaging spectrometers such as HyspIRI [2] or an International
Space Station (ISS) imaging spectrometer would generate data
rates on the order of one Gigabit per second (Gb/s). These
rates are a consequence of the full spectral measurement at
high spatiotemporal resolution required for a range of unique
science and application objectives [3]. However, the large data
volumes affect mission requirements for the entire data han-
dling chain including onboard digitization, storage, downlink,
ground processing and distribution [4]. Bottlenecks along this
path can constrain the instrument duty cycle, reducing science
and application yield. In particular, bandwidth constraints have
motivated new advanced lossless compression techniques such
as the FL algorithm [5]-[8] that have achieved compression
rates of four or greater. Efforts to optimize lossless methods
eventually face theoretical limits, but data rates continue to
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increase. The challenge has driven research into other tech-
niques that can further reduce data volumes while preserving
science yield.

One promising approach is to avoid storing or transmitting
cloud-contaminated data [9], [10]. Historically clouds are
estimated to cover 54% or more of the Earth’s land area and
68% or more of the oceans [11]-[13]. Many algorithms to
estimate atmospheric or surface properties cannot function in
the presence of condensed water/ice clouds. This makes more
than half of visible to short wavelength (VSWIR) scenes in
remote sensing archives unusable for their intended science
and applications purpose [14]. Excising these scenes at the
sensor can significantly reduce onboard storage and bandwidth
requirements. However, the community lacks a practical algo-
rithm capable of real-time execution in instrument hardware.

This paper addresses the need. We present a real-time cloud
screening method that executes on raw sensor data for use
onboard aircraft and spacecraft. We report its performance
both in simulations and in a deployment on the Airborne
Visible / Infrared Imaging Spectrometer - Next Generation
(AVIRIS-NG). Our approach is designed for the unique re-
quirements of real-time cloud screening, with rapid Gb/s
execution rates and responsiveness to changing terrain and
illumination conditions. It amounts to several simple channel
thresholds, which are adapted dynamically to account for
predicted brightness of clouds and terrain. Some inaccuracy
is tolerable since any missed clouds can be excised later on
the ground. It is operationally very simple to implement, and
conservative settings ensure that good quality science data is
preserved at all costs. We will demonstrate that it is possible to
achieve data volume reductions near the theoretical maximum
without any significant loss of science data.

A. Prior work

We focus on the VSWIR electromagnetic spectrum from
0.4-2.5 pm. Figure 1 shows an example scene from the
“classic” Airborne Visible / Infrared Imaging Spectrometer
(AVIRIS-C) with representative spectra of different materials
and clouds. There are many studies of cloud detection in these
wavelengths, and algorithms vary in their assumptions and
complexity. “Classical” cloud screening applies threshold tests
to spatial and spectral properties of the image [15]. Pixels
whose values fall outside valid ranges are marked as cloudy.
For example, the MODIS algorithm compares selected visible
and near-infrared (VNIR) and near infrared (NIR) bands to
predetermined thresholds, and then aggregates the result in
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Fig. 1.
contains both clouds and snow. Right: Spectra from bare terrain, snow, open
water, and clouds, in units of dark-subtracted instrument Digital Numbers
(DNs).

Left: AVIRIS-C image f100521t02p05, a challenging scene which

different combinations depending on land type [16]-[18]. The
algorithm uses a combination of 14 wavelengths and over 40
tests. This underscores the intrinsic difficulty of constructing
a universal and complete cloud screening procedure.

Even more complex algorithms are possible. Some state
of the art cloud screening techniques estimate the optical
path from absorption features like the oxygen A band, as in
Gomez-Chova et al. [19] or Taylor et al. [14]. Thermal IR
channels can add brightness temperature information. Minnis
et al. predict clear sky brightness temperature values using
ambient temperature and humidity, and then excise pixels
outside these intervals [20]. Texture cues can also be used
to recognize clouds by their high spatial heterogeneity [21].
Martins et al. demonstrate that a simple spatial analysis -
the standard deviation of VNIR isotropic reflectances in a
3x 3 pixel window - reliably discriminates clouds from aerosol
plumes over ocean scenes [22]. Murtagh et al. represent spatial
dependencies using a probabilistic Markov Random Field
(MREF) prior [23]. Other efforts use special sensing modalities
such as polarization [24].

Of direct relevance to this work, onboard cloud screening
has been demonstrated onboard the EO-1 spacecraft [25].
The EO-1 cloud screening uses the solar zenith angle to
compute the apparent Top of Atmosphere (TOA) reflectance.
Then it applies a branching sequence of threshold tests based
on carefully-crafted spectral ratios to distinguish clouds and
bright landforms such as snow, ice, and desert sand. The EO-
1 cloud detection also acts as a data filtering step prior to
onboard flood and cryospheric classification [26], [27]. To
our knowledge it is the only previous case of cloud-screening
performed on orbit. Due to the limitations of the mission’s
12MHz flight computer, screening a 1024 x 256 image requires
about 30 minutes [28] which is three orders of magnitude
lower than our desired processing rate. Nevertheless, the work
provides an important proof of concept and a foundation for
our study.

B. Algorithm requirements

Previous systems try to screen all clouds to prevent con-
tamination of later retrieval algorithms. In contrast, we aim to
reduce the instrument data volume which leads to distinct re-
quirements. Completeness is not critical since the end user can
perform a more precise cloud screening later. Our algorithm
can be conservative, abstaining from ambiguous classifications
to prevent loss of science data. This requires some way
to represent classification certainty. There is precedent; for
example, Ishida et al. supplement their binary decision with a
confidence score [29]. Gomez-Chova et al. use a Gaussian
mixture model to produce posterior probabilities [19]. The
Bayesian probabilistic model of Merchant et al. combines
observational data with prior predictions from atmospheric
forecasts, leading to true probabilistic predictions [30]. Rig-
orous probabilistic approaches are well-suited to an onboard
algorithm that abstains from uncertain classifications.

Onboard cloud screening must also satisfy strict computa-
tional constraints. The algorithm must process all data col-
lected by the spectrometer before it enters the flight recorder.
In many cases this requires that the algorithm run in instrument
hardware such as a Field Programmable Gate Array (FPGA),
entailing additional design requirements [9]. For a pushbroom
instrument, image lines arrive sequentially. Depending on the
buffering strategy it may not be possible to pass more than
a handful of values from one line to the next. This limits
the use of spatial context. Moreover, classifiers instantiated
in hardware logic typically forgo the use of exponentials,
transcendental functions and even floating point operations,
precluding many nonlinear classifiers and naive implementa-
tions of linear classifiers. Additionally, the cloud screening
should operate with Gb/s throughput, using a small fixed
number of arithmetic operations on locally-available data, and
have a deterministic computational path without recursion or
iterative loops. This excludes many classifiers such as nearest-
neighbor or decision tree algorithms. Finally, as a consequence
of embedded hardware execution, the cloud screening must
operate on raw instrument data values. This rules out most
classical cloud screening algorithms, since it is not realistic
to reproduce the ground-side processing which could provide
calibrated reflectance as input.

This work presents a technique to satisfy these requirements.
We demonstrate a very simple cloud screening algorithm that
operates on raw instrument data, significantly reducing its
volume while achieving a higher throughput rate than any
previously-reported cloud screening system. As with EO-1,
the screening decision is a sequence of threshold tests on
selected wavelength values. However, these thresholds are
recomputed before each observation using foreknowledge of
scene parameters: the solar irradiance from orbital ephemeris,
and instrument calibration and terrain properties from his-
torical data. These define distributions of raw uncalibrated
instrument values for cloud and terrain, which in turn prescribe
channel thresholds. Operators update thresholds as often as
needed to track changes in imaging conditions and geometry.
This partitions the cloud screening calculations into an offline
part that benefits from powerful computers and ancillary
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meteorological information, and a fast real-time part suited
to onboard execution and FPGA logic.

The following sections describe the algorithm’s theoreti-
cal assumptions. We present a formal Bayesian probabilistic
method for selecting thresholds. We then evaluate performance
for different operations scenarios using a three year historical
image archive of the “classic” Airborne Visible / Infrared
Imaging Spectrometer (AVIRIS-C) [31]. A case study quanti-
fies the compression benefits using orbital parameters of the
International Space Station (ISS). Finally, we report the results
of a field deployment onboard the AVIRIS Next Generation
(AVIRIS-NG) airborne imaging spectrometer [32]. A cloud
screening testbed was installed in parallel with the regular
AVIRIS-NG data system, and operated without error during a
recent science campaign.

II. METHOD

Our cloud screening approach tests specific channels with
user-defined thresholds. We will focus on VSWIR imaging
spectrometer measurements and will refer to each spectrum as
a pixel (i.e. a single image location with all wavelengths). In
mathematical terms, a cloud screening algorithm must define
an exclusion region R C R% a range of instrument data
values for which a pixel is judged to be cloudy. The observed
spectrum of instrument data forms a vector y with multiple
spectral channels per pixel. The cloud screening decision
maps these pixel brightness values to a binary classification
c= f(y): R* = {c1,ca}, where c; represents the event that
clear sky is observed and co that there is a cloud present. The
corresponding decision rule is simply:

caifyeR

i ={ oEyen n

Here we define R with a set of channel thresholds ¢, marking
any pixel that exceeds all these thresholds as cloudy. Figure
2 shows the decision for a single channel. The vertical axis
indicates probability density. We seek thresholds that best
distinguish terrain classes from cloud pixels. Note that there is
some overlap between the distributions, so in this one channel
the populations are inseparable. Thus there will always be
some unavoidable classification error.

Threshold ¢ Excluded region &

Terrain
pixels

Counts

Channel value y;
Fig. 2. Thresholds ¢ define an exclusion region to classify pixels as cloudy.

These terrain and cloud brightness distributions depend on
scene-specific factors such as land type, seasonal and snow
cover effects, and illumination. Fortunately we can predict
these factors to first order using historical data and obser-
vation geometry. We use the following sequential steps: (1)

in advance, determine the channels that will be used; (2)
predict pixel brightness by extrapolation from historical data;
(3) optimize channel thresholds to reflect data reduction and
false alarm requirements; and (4) in real time, apply these
thresholds to excise cloudy data.

A. Channel selection

Clouds are bright across the ultraviolet (UV), visible wave-
lengths and Infrared (IR). However, cloud screening algo-
rithms conventionally use only a small subset of the avail-
able channels. The MODIS cloud mask uses the 0.659 pm
reflectance channel. The 0.865 pum channel, ratioed with
0.659 pm, can identify clouds by their flat spectra [25].
0.936 pm and 0.940 pm channels discriminate low clouds
and shadows, respectively. Additional tests on NIR channels
at 1.24 pym and 1.65 pm help distinguish snow [33]. The
1.38 pm band indicates cirrus clouds [34]. The channel lies in
a H,0O absorption feature that is typically opaque due to water
vapor in the lower troposphere, so large reflectance indicates
a reflection from high altitude cirrus.

Postprocessing can often correct translucent clouds like
high cirrus, so these can be considered “good data” for our
purposes. We will focus exclusively on low, opaque clouds.
This simplifies the problem considerably since opaque clouds
are easiest to detect. Our approach can use arbitrarily many
frequencies, but the following experiments use just two chan-
nels for clarity. A blue visible channel discriminates clouds
from land and ocean, while a SWIR channel excludes snow
and ice. Section III-B demonstrates that this pairing has the
highest information content for our dataset.

B. Estimation of cloud and surface appearances

This section describes models of cloud and terrain appear-
ance that are used on the ground to predict pixel brightness dis-
tributions. Our method is similar to that of Merchant et al. [30]
which represents explicit distributions of cloud appearances
under different imaging conditions, atmospheric status and
terrain type. A prior P(c;) represents the known probability of
observing clouds, which can be a historical average. A state
variable x represents known background conditions such as
the surface type.

To set appropriate thresholds we must ultimately estimate
P(y | x,c), the conditional probabilities of pixel values for
clouds and terrain. These uncalibrated instrument values are
sensitive to variations in solar input due to observation ge-
ometry. We simplify the problem by estimating the related
distribution P(z | x,c), a normalized representation that
removes the solar variability. We use Top Of Atmosphere
(TOA) reflectance values z that have been adjusted for the
solar zenith angle # using:

md?
= —Q -b 2
z cos(9)sg(y ) @
Here b € R is a bias and g € R? is a gain that translates
the measurement to radiance in W/nm/sr/m?. The Earth-Sun
distance d is a function of the Julian day. The value s € R?
the incident solar flux per channel, typically computed by
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convolving a solar illumination model with the band spectral
response. The resulting values z are solar normalized but unit-
less brightness values decoupled from observation geometry.
We accumulate the new values in multidimensional histograms
to form P(z | x,¢), storing a different histogram for every
distinct surface class x. Each histogram has one dimension
per spectral channel used in the test.

Operationally one may need to analyze an orbital segment
spanning a range of solar angles and surface types. In this case
P(y | x,¢) combines each surface type in correct proportion.
We perform a weighted summation of the appropriate pixel
brightness distributions at each segment time step ¢t € 7T,
simultaneously accounting for solar effects and transforming
the solar normalized representations back to instrument data
values. For a histogram this is a simple operation, with
normalized bin coordinates z related to new timestep-specific
bin coordinates y; using:

Y | Xt, C [ z \ X¢, C
= 7 Z

Here x; and 6; refer to predictions of land type and solar zenith
angle from orbital ephemeris. In the special case of models
having two spectral channels, inverting solar normalization is
tantamount to a simple affine transformation of a 2D image.

Figure 3 illustrates this process using a typical AVIRIS-
C image (f100521t02p05). The top panel shows the original
populations of background terrain and cloud pixels when
imaged with a solar zenith angle of 18°. The vertical and
horizontal axes show brightness values y for the 0.45 pm and
1.25 pum channels respectively. As an example we transform
these data to predict the y values for a solar zenith angle
of 45° (Bottom). Scene dimming is most obvious in the
lobe corresponding to snow. Combining such histograms in
proportion to the terrain type lets an analyst predict future
pixel brightness for any anticipated mixture of terrain types
and observation geometries.

bcos(@t)

Tard 3)

C. Threshold Selection

Our approach cannot predict future observations exactly;
it only gives probability distributions over the brightness of
future clouds and terrain. We account for this uncertainty in
our thresholds using Bayesian decision theory [35]. Recall
that y is a vector of brightness values across several spectral
channels, and that c¢; and co are clear and cloudy cases
respectively. We define a loss function with a penalty apy
for false negatives (clouds that pass the filter) and a separate
penalty app for false positives (clear scenes that are wrongly
excised). The total expected loss E[L] accounts for both
penalties:

E[L] :/ arpP(c1 |y,x) dy
R
+/ arnP(c2 |y, x) dy 4
RI\R

This serves as a figure of merit; operators simply choose the
channel threshold combination with the lowest expected loss.

a = 1000

0.45um channel intensity

’ Terrain
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Fig. 3. Brightness distributions in 0.45 pum and 1.24 pm channels for
AVIRIS-C image f100521t02p05, a scene which contains both clouds and
snow. Top: Original image with a solar zenith angle of 18°. Bottom: synthetic
distribution after transforming the image to a solar zenith angle of 45°.
Optimal thresholds are shown for an aggressive cloud screening (a¢pp = 10)
and a conservative cloud screening (app = 1000).

Following Merchant et al. [30], we rewrite the probability of
the cloud case, c;, using Bayes’ rule:

P(y | x,c1)P(x | c1)P(c1) (5)
Py | x)P(x)

Assuming that the background state is independent of the

cloud probability, we have P(x | ¢1) = P(x). We ignore the

P(y | x) term which is the same for both cloudy and clear

cases, leaving:

P(Cl ‘ yvx) X P(y ‘ X, Cl)P(Cl) (6)

The two possible cases are clouds c¢; and clear sky c,. This
permits the following decomposition:

P(Cl ‘yvx) =

E[L] :/ appP(y | x,¢1) P(c1)dy
R
+ / arnP(y | x,c2) P(c2)dy @)
JRI\R

One can minimize this loss using any nonlinear optimization
method appropriate for the chosen representation of P(y |

, ¢). The proposed multidimensional histogram representation
of P(y | x,c) permits a direct grid search; the integrated



THOMPSON ET AL.: RAPID SPECTRAL CLOUD SCREENING

expected loss is a cumulative sum, computable with a fast
recursive operation. More generally, gradient descent could be
used to find a locally-optimal threshold. Using 7 to denote the
subspace excluding channel v, and 1),, the set of points on the
decision boundary in the subspace excluding channel v, the
error gradient with respect to a specific threshold on channel
v is:

e :/ appP(y | x,c1) P(c1)dyy,
de, Py
_/w arnP(y | x,c2) P(c2)dyy, ®)

This permits minimization using the Newton method or an-
other gradient-based approach.

Figure 3 shows optimal decision boundaries for the test
image with apy = 1. The two thresholds correspond to
a lenient case where app = 10 and a strict case where
app = 1000. The scene contains both clouds and snow;
lobe of the background distribution corresponding to snow
features has a high brightness in the 0.45um channel but a
low brightness at 1.25 pm. Consequently the best decision
boundary carves out a rectangular exclusion region R. The
optimal thresholds vary significantly depending on geometry.
For the original image with the more lenient false negative
penalty ar = 10, they are 11800 and 10000 for the 0.45 ym
and 1.25 pm channels respectively. For the stricter case of
arny = 1000 they become 15500 and 11500, focusing on the
fraction of cloud pixels that are completely unambiguous. In
the dimmer scene the best thresholds are 9400 (0.45 pm) and
8700 (1.25 pum) at apny = 10, moving to 12200 and 9800 at
apN = 1000.

After selection of optimal threshold values for a new obser-
vation, the flight hardware performs these tests once per pixel,
designating any pixel that exceeds all thresholds as “cloudy.”

D. Spatial Aggregation

The pixel classification may mislabel isolated bright terrain
pixels such as anthropogenic features, sun glint, or other scene
clutter. Such localized errors can be addressed by spatial
smoothing, with methods like the adjacency tests of the
MODIS approach [16], spatial features [19], or even image
segmentation [36]. Not all of these remedies are suited for
real-time processing since instrument buffers can only store a
small portion of the image at one time.

Here we evaluate a simple spatial aggregation method suited
for real-time execution in instrument hardware. It operates on
a small number of buffered lines simultaneously, and makes an
aggregate decision about whether to keep or excise the block.
A spatial coverage threshold determines the number of cloudy
pixels that will cause a vertical block to be excised. This spatial
aggregation gives additional resilience to small localized bright
patches or single-pixel artifacts. We use a spatial coverage
threshold between 25% and 50%. Our rationale is that good
quality data can sometimes be recovered from images with
less cloud cover than this amount, but images with cloud cover
greater than 50% would almost never be used. Optionally, each
block can be subdivided horizontally into two or more sub-
blocks, with separate keep/reject decisions for each. This finer

procedure SETTHRESHOLDS(app)
for all timestep t € {1,...,7T} do
calculate surface type x;
calculate solar zenith angle 6;
calculate P;(y | x¢,¢1)
calculate P;(y | x¢,¢2)
end for
Ply | x.¢) = i X, Pily | xt,0)
¢ = argmin , B[L]
end procedure

> via Equation 3
> via Equation 3

> via Equation 7

Fig. 4. Algorithm for threshold selection, performed offline. Analysts must
specify the false positive penalty o p

Pixel classification

[

[

Excise

Spatial threshold

Cloudy ~

Fig. 5. Real-time cloud excision algorithm (onboard). Here b represents the
minimum number of cloud pixels that trigger an excision.

spatial resolution can potentially preserve more of the good
quality data near to clouds.

Figure 4 shows pseudocode for the threshold-setting proce-
dure. Figure 5 shows the real-time portion as a block diagram
with pixel-level and spatial aggregation thresholds. Figure 6
then illustrates the result for the image associated with the
cloud and snow distributions presented previously in Figure
3. This is AVIRIS-C image f100521t02p00r05, acquired over
Senator Beck Basin, Colorado, on May 21 2010. The left panel
shows the original scene. The channel threshold operation
labels cloudy pixels, shown as darkened areas in the middle
panel. The right panel shows spatial aggregation which flags
a segment of the image for excision.

III. EVALUATION ON HISTORICAL AVIRIS-C DATA

We evaluated the method’s performance using the AVIRIS-
C instrument’s 2009-2011 data archive [31]. In this period
AVIRIS-C flew throughout North America on campaigns re-
lated to engineering and calibration, mineralogy, ecology, and
disaster response. AVIRIS-C operators prefer to fly on clear
days, which reduces the total fraction of cloud cover. However,
many images contained clouds and this period provides a rich
dataset to test the cloud screening approach. The AVIRIS-C
VSWIR imaging spectrometer has 0.01 pm resolution in 224
bands from 0.38 pum to 2.5 pm. All AVIRIS-C images have
680 samples and an along-track dimension that ranges from
several thousand to over ten thousand image lines.

A. Data Set

Much previous work measures cloud screening performance
by correlating observations with dedicated cloud/aerosol sen-
sors [14], [17], or with authoritative standards like the MODIS
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Fig. 6. AVIRIS-C image f100521t02p05, which contains both clouds and
SNow.

cloud mask [37]. In our case the AVIRIS-C spatiotemporal
footprints rarely overlapped with other cloud sensors. Instead
we evaluated performance by labeling of every cloud pixel
in the archive by hand. We used only flights above 10000m
altitude for maximum fidelity to orbital instruments. We
inspected this entire catalog of raw uncalibrated instrument
data, marking every pixel of each image manually as either
“cloudy” or “clear” to form a ground truth cloud classifica-
tion. We would typically perform this labeling in an image
editor by first thresholding each image and then cleaning
any misclassified points using a manual paint tool. We only
labeled clouds that were opaque, i.e. that completely obscured
the terrain color and texture underneath. This was a strict
criterion, and occasionally left ambiguous translucent pixels
around the edges of labeled clouds. We prevented edge pixels
from contaminating the “clear” class during the evaluation by
disregarding any terrain spectrum within 10 pixels of a cloud.
Our rationale was that either classification would be reasonable
for these ambiguous cases so they should not count for either
credit or penalty. Such cases constituted a tiny fraction of the
dataset, leaving plenty of data points for our evaluation.

We checked our dataset’s representativeness using typical
land cover taxonomies. The 14-class University of Maryland
(UMD) system [38] is attuned to biosphere and climate
research, but its categories correlate with surface reflectance
and can therefore bear on the observed spectral properties.
We determined UMD categories for each image using onboard
navigation telemetry to find the start location in GPS coordi-
nates. We matched this location to land types recorded in the
MODIS Collection 5 global land coverage products [39]. Table
I shows the amount of data assigned to each category. Urban
and cropland areas were particularly well represented. A large
fraction of AVIRIS-C images were acquired over the Gulf
Coast ocean due to extensive operations in this area related
to the 2010 Gulf Oil spill. The land types differed from the
global distributions but included instances from nearly all of
the UMD land cover categories.

TABLE I
LAND AND OCEAN COVER REPRESENTED IN AVIRIS-C DATASETS.

Land cover Clear pixels Cloudy pixels Source
Water 6.7x 105  2.2x107 UMD
Evergreen needleleaf forest 3.7 x 107 1.4 x 105 UMD
Evergreen broadleaf forest 5.8 x 106 5.8 x 10° UMD
Deciduous needleleaf forest - - UMD
Deciduous broadleaf forest 2.1 x 108 4.4 x 108 UMD
Mixed forest 1.3x 108 3.7x10% UMD
Closed shrublands 1.1x10% 6.5x10° UMD
Open shrublands 1.3x10% 1.8x10% UMD
Woody savannas 1.3 x 108 2.6 x 108 UMD
Savannas - - UMD
Grasslands 8.9x107 3.1x10° UMD
Croplands 1.0x 108 7.3x105 UMD
Urban and built-up 3.1x107 29x10* UMD
Snow and ice 1.3 x 108 4.4 x 106

Barren 9.7x 107 1.7 x 102

Ocean glint 3.6 x 108 1.5 x 107

We removed some specific and exceptional image features.
Except where noted, we excluded images containing ‘“‘sun
glint” effects since they would not be used for most appli-
cations. We also excluded a set of images of the White Sands
National Monument in Southern New Mexico, a feature com-
posed of nearly pure gypsum that is highly reflective across all
wavelengths. This feature is an unusual, if not globally unique,
phenomenon [40]. Finally, we removed several scenes with
opaque smoke from forest fires where the “correct” answer
was ambiguous. This left a dataset of 507 images included in
the study.

B. Channel Selection

The AVIRIS-C dataset gave insight into the information
provided to the cloud screening decision by different com-
binations of channels. As apparent from Figure 1, snow was
highly reflective in visible wavelengths but dark in the SWIR.
Conversely, bare terrain that was bright at SWIR wavelengths
was significantly dimmer than clouds in VNIR ranges. This
favored using channels in both regions.

Mutual Information (MI) indicates the information provided
by different channel combinations. MI is a quantity from
information theory describing the information value of an
observation with respect to another unknown variable [41].
Specifically it quantifies how knowledge of one reduces the
Shannon entropy in the other. In our case MI related the
knowledge of frequency channels to the binary cloud/clear
classification. We computed the MI using the following ex-
pression:

P(c1,y)
> Ple1,y) log (P(cl)P(y)>

yey
PCQa
+ %p(cmw log (M) 9

where )) was the domain of y. Tables II and III show scores for
land (368 flightlines) and ocean (139 flightlines) respectively.
For these datasets the 0.45 pm channel was the strongest
single indicator of clouds. Table IV shows scores for images
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Fig. 7. Dark-subtracted brightness distributions at 0 degree solar zenith angle.

containing snow and ice (43 flightlines). The cirrus channel
at 1.38 pm was less valuable for this dataset because high-
altitude translucent clouds were not counted. If we also sought
to screen cirrus clouds this channel would have been more
important.

While the 0.45 pm channel had the highest overall MI,
it was not obvious which other channel made its best part-
ner. Combinations with SWIR wavelengths gave the largest
net improvement, particularly for snow and ice scenes. The
1.25um channel had been used previously for snow/ice tests
in production systems such as the EO-1 screening algorithm
[25], where it exploited the low SWIR absorption of snow as
well as the low brightness of bare terrain in this spectral region.
But for our system that considered multiple channels simulta-
neously, sensitivity to bare terrain provided no advantage. The
0.45 pm channel already discriminated everything but snow,
for which either SWIR frequency worked well. Consequently
the MIs of the [0.45 pm, 1.25um] pairing and the [0.45 pm,
1.65um] paring were basically indistinguishable. We return
to this question in the following section, where simulations
incorporating spatial information show a slight advantage to
the 1.65 pum channel.

Figure 7 shows the combined distributions for land, ocean,
and cloud pixels, with values given as dark-subtracted Data
Numbers translated to 0° solar zenith angle. The terrain
distributions had axis-parallel lobes corresponding to barren
terrain and snow. There is some mixing between the ocean and
land distributions in this image. We labeled each scene with
its dominant land cover class, so - for example - ocean scenes
were occasionally contaminated by islands and shorelines.
There was also some natural overlap due to the ambiguity
between opaque cloud, which was labeled, and haze or thin
semitransparent cloud, which was not.

Figure 8 compares cloud and surface brightness to predic-
tions from the idealized cos(#) illumination falloff. We dark-
subtracted the raw instrument values and corrected them for
earth-sun distance. We then binned the solar zenith angles in
ten-degree increments and plotted the mean of the resulting

TABLE 11
MUTUAL INFORMATION OF SELECTED CHANNELS FOR CLOUD SCREENING
OVER LAND SURFACES (LARGER IS BETTER). THE FIRST DATA COLUMN
SHOWS THE INFORMATION PROVIDED BY A SINGLE CHANNEL TAKEN
ALONE. OTHER ENTRIES SHOW THE VALUE OF TWO-CHANNEL
COMBINATIONS. BOLD TEXT IDENTIFIES THE TOP-SCORING
COMBINATION. REFERENCES: ' ACKERMAN ET AL. [16]; 2GAO ET AL.
[34]; 3FRIEDL ET AL. [39]; 4GOMEZ-CHOVA ET AL. [19].

MI when combined with

Channel MI 0.66 pum 0.86 pm 1.25 pm 1.38 pm 1.65 um Ref
0.45 um 0.58  0.61 0.59 0.63 0.59 0.63

0.66 um 0.48 0.54 0.55 0.51 0.55 1’374
0.86 um 0.39 0.47 0.46 049 134
1.25 um 0.38 0.47 045 1,23
1.38 pm 0.20 041 1,23
1.65 um 0.26 1,3

TABLE III

MUTUAL INFORMATION OF SELECTED CHANNELS FOR CLOUD SCREENING
OVER OCEAN SURFACES (LARGER IS BETTER). REFERENCES ARE IN THE
TABLE II CAPTION.

MI when combined with

Channel MI 0.66 yum 0.86 um 1.25 pm 1.38 pum 1.65 pum Ref
0.45 um 0.61  0.63 0.64 0.63 0.63 0.62

0.66 pm 0.60 0.62 0.62 0.62 0.60 134
0.86 um 0.46 0.52 0.48 0.50 134
1.25 yum 0.48 0.48 049 123
1.38 um 0.10 048 123
1.65 pm 0.43 1.3

TABLE IV

MUTUAL INFORMATION OF SELECTED CHANNELS FOR CLOUD SCREENING
OVER SCENES CONTAINING SNOW AND ICE (LARGER IS BETTER).
REFERENCES ARE IN THE TABLE II CAPTION.

MI when combined with

Channel MI 0.66 pm 0.86 um 1.25 um 1.38 ym 1.65 pm Ref
0.45 um 045  0.50 0.50 0.63 0.59 0.63

0.66 pm 0.44 0.51 0.62 0.59 0.62 17314
0.86 um 0.43 0.61 0.58 0.61 L34
1.25 um 0.54 0.60 0.58 1,23
1.38 um 0.54 0.61 1,23
1.65 pm  0.40 1,3

image pixels in each zenith bin. Figure 8 shows the result,
with brightness as a function of solar zenith angle, with a
solid line indicating the best fitting cosine-proportional curves.
There was some natural deviation from the ideal due to the
finite data set size, diversity of terrain types, and diversity of
zenith angles within each bin. However, the overall result
corroborates the cosine solar zenith angle relationship for
both cloud and land surfaces.

C. Predictive thresholding

After forming 2D histograms we calculated thresholds for
pairings of the 0.45 pm channel with either the 1.25 pm or
1.65 pm channels. We separated the data into a training half
used to set thresholds and a test half used for evaluation.
We then transformed the training half to a TOA reflectance
representation to construct surface and cloud brightness distri-
butions. We calculated bias factors using an automatic closed-
shutter pre- and post-calibration segment embedded in the
raw image. These biases were estimated once on a single
calibration image and then applied uniformly across the whole
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Fig. 8. Cloud and terrain brightness as a function of solar zenith angle, for
all images over land. Instrument digital numbers have been corrected for dark
current levels.

dataset, relying on the stability of the instrument as would be
the case during extended autonomous operations.

We tested a range of operating regimes with different false
alarm costs. Our most aggressive setting held false alarm
costs equal to the false negative cost. This setting would
maximize the compression rate; it would be appropriate for
measurements such as large scale atmospheric profiling. At
the other extreme, we set false alarm penalties to be a factor
of 10° greater resulting in a very conservative cloud screening
that preserved good data at all costs. This would be appropriate
for scheduled acquisitions over specific high value targets. For
each false alarm cost we used an exhaustive grid search to
select the best channel thresholds. This gave a set of channel
threshold pairs representing the envelope of optimal parameter
settings.

Initially we calculated all thresholds in the normalized TOA
representation. We applied them to each new test scene by
translating back to the appropriate raw instrument values,
transforming brightness according to the test scene’s solar
zenith angle. We then applied cloud screening with a 25%
spatial coverage threshold. We evaluated several granularities
of spatial aggregation, subdividing each along-track segment
of 32 lines into one, two, or four cross-track blocks.

We also sought to determine the potential for further im-
provement by using more sophisticated classifiers. To that
end, we evaluated the use of three channels in different
combinations of VNIR and SWIR wavelengths. The three
channel tests used the same solar normalization strategy
with an exhaustive grid search to compute Bayes optimal
thresholds. This shows the performance gains possible by
growing the number of channels further. Still more sophis-
ticated classifiers are possible - a linear decision boundary,
suitably stripped of floating point arithmetic, arguably meets
the real-time hardware requirements. This classifier calculates
a prediction for each pixel independently by first applying the
solar zenith correction and then forming a linear combination

of all channels. As before, we smooth the pixel-level classifi-
cations using a spatial aggregation test. We trained the linear
decision boundary on the held out half of the data, sampling
randomly from cloud and background distributions. Training
used a stochastic gradient descent algorithm minimizing a sum
squared error objective [42].

D. Evaluation

The simulation provided two performance values for each
false alarm tolerance: a false alarm rate giving the fraction of
good data accidentally deleted, and a true positive rate giving
the fraction of cloudy image blocks that were successfully
removed. We defined false negatives as any blocks containing
greater than 50% cloud that were not excised. An excised
block was a false positive if it did not contain any significant
clouds (less than 5%). This left a range between 5-50% cloud
cover where neither excision nor abstention were penalized.
The free range was necessary since cloud edges were often
ambiguous making the precise fractional coverage of small
image areas somewhat subjective. We evaluated performance
first using separate thresholds for land and ocean scenes, and
then for a combined dataset which ignored surface type.

Finally, we simulated a hypothetical space mission to eval-
uate data compression rates. We calculated a year’s orbits
of the International Space Station at 10 minute time step
intervals, recording at each time step the solar zenith angle
and the terrain type under observation. Using the Eastman et
al. heuristic [11], which was the lowest of recent estimates, we
conservatively predicted that 68% of water scenes and 54% of
land scenes would be cloudy. Given that instrument operators
were able to set thresholds with foreknowledge of the surface
type, we applied the appropriate land or ocean performance
values in proportion to their appearance in each orbit. This
gave the expected fraction of each orbit that could be excised
for a desired false positive level. We assumed the instrument
would be operating whenever the local solar zenith was less
than 75°.

E. Results and Discussion

Figures 9-13 show cloud screening performance over land
and ocean, as well as for the combined dataset that includes
sun glint. We report results using a Receiver Operating
Characteristic (ROC) curve plotting false alarm and true
positive rates [43]. The ROC curve represents the envelope
of performance that can be achieved; designers can move
along it by changing the channel thresholds to be more or
less aggressive. Desirable performance lies in the upper
left, with many excised clouds and few false positives. We
show performance for both channel combinations, with and
without Solar Zenith Adjustment (SZA). The thick grey line
in each plot marks the performance of our reference design,
a two-channel cloud screening algorithm operating over land.
Performance is consistent with work by Williams et al. on a
threshold-based FPGA system combining VSWIR and thermal
channels [9]; they report 0.02 — 0.09% missed clouds at a
0 — 0.99% false detection rate, which also lies on this ROC
curve.
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Our reference design uses the solar zenith correction. We
found the correction nearly always improved performance,
particularly in the case of the combined dataset including
diverse land cover, ocean, and glint scenes. For the 1.65 pum
and 0.45 pm channel combination at 0.1% false positive
ranges, the solar correction halved the false positive rate.
However, performance was surprisingly good even without
solar correction. We concluded that illumination was benign
for most AVIRIS-C images in our catalog, and effects of solar
variability were less important than large intrinsic differences
in surface and cloud reflectance.

The experiments revealed minor differences between
1.25 pm and 1.65 pm channels. Many cloud screening algo-
rithms favor the 1.25 pm channel as an exclusion test for snow
and ice, and we also found it effective for this purpose. The
1.25 pm channel can also be used to exclude other dark terrain
types. However, when combined with a 0.45 ym channel this
second role was completely redundant, so that either SWIR
channel was an effective pairing. In fact, snow absorption was
even stronger at 1.65 pm consistent with studies by Painter
et al. [44]. Consequently, the 1.65 um channel outperformed
1.25 pm over land. All methods performed equally well over
ocean. We also considered using three channels simultaneously
and found that the combination of 0.45um, 1.25pm and
1.65pum provided a slight additional benefit. Other triples
failed to match the performance of the 0.45um and 1.65pm
pairing and are excluded from the plot. Adding a fourth
channel might improve performance slightly more, though the
histogram representation would be nearly a Terabyte in size.

A more practical approach is to incorporate more channels
using the more traditional linear classifier. Figure 12 compares
its performance to our reference design. The linear classifier
performs best of all in the extreme low false positive regime,
excising up to 97% of clouds with negligible loss of science
data. This suggests that still better performance is possible
if the instrument hardware can support the required multi-
channel operations.

Finally, Figure 13 shows the performance for different spa-
tial aggregation strategies. Subdividing the swath horizontally
into smaller spatial blocks harmed classification performance
since small, isolated bright terrain areas more easily triggered
false alarms. As some compensation, each block was smaller
and screening decisions were made at a fine spatial resolution.
Therefore an excised cloudy block was less likely to contain
clear pixels.

We used this result to estimate compression potential for
future Earth-orbiting missions. Figure 14 shows compression
performance based on land and ocean fractions observed
during a year of International Space Station (ISS) orbits. We
assumed cloud screening used the 0.45 pym and 1.65 pm
channels. The horizontal axis shows the fraction of good data
that was accidentally removed, which depends on the false
alarm tolerance chosen by the designer. We considered false
positive rates ranging from 0.001% (one such error every
hundred thousand blocks, essentially negligible) to 0.01%. The
data reduction achieved on each orbit then depends on the
proportion of land and ocean encountered. We calculated the
reduction using the performance estimates from our AVIRIS-
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Fig. 9. Performance on AVIRIS-C 2009-2011 test scenes. We evaluated two
channel combinations, with and without a Solar Zenith Adjustment (SZA).
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Fig. 10. Performance on AVIRIS-C 2009-2011 test scenes.

C study, presuming that the ground control could apply land
or ocean threshold sets over the appropriate surface types.
The vertical axis shows the fraction of pixels removed.
Boxes show the median and quartiles, with dashed whiskers
indicating the extent of the most extreme orbits. At a false
alarm rate of 0.001% cloud screening reduced data rates by
approximately 60%. Performance never rose very far above
this level, even for very lenient instrument settings, and the
overall span of system performance was less than the natural
cross-orbit variability. The strictest threshold achieved a rate
reduction better than 90% of the theoretical optimum. This
analysis excluded ocean scenes containing glint, so perfor-
mance could be different for the special case of cloud screen-
ing during glint-mode atmospheric retrievals. Our analysis
also ignored latitudinal differences in cloud cover and land
type [13]. Northern latitudes pose the special challenge of the
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finest grained snow, which is highly reflective [44], [45] and
somewhat rare in this test dataset. If needed, missions could
mitigate these effects by defining a specific new land cover
type devoted to snow which would naturally lead to more
conservative thresholds over such regions.

IV. AIRBORNE DEMONSTRATION

This section describes a deployment onboard the AVIRIS-
NG airborne imaging spectrometer [32]. AVIRIS-NG is a next
generation pushbroom instrument that measures the 0.38 —
2.5 micron region with 480 bands at 5nm spectral resolution.
Its 640 cross track samples provide spatial resolutions of 1
meter or better, depending on altitude. Minor differences in
spectral sampling should not affect the cloud screening since
both clouds and bright terrain features are spectrally smooth
in the wavelengths of interest.
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Fig. 13. Performance on AVIRIS-C 2009-2011 test scenes.
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Fig. 14. Performance on ISS orbits, disregarding scenes with significant ocean
glint.

The onboard cloud screening system used a commensal data
path that ran in parallel alongside the science data acquisition
and synchronization process. The primary data handling path
used a Virtex-5 FPGA connected to the instrument through a
Camera Link interface and to the IMU/GPS device through a
serial and digital input interface. The commensal path and
science data acquisition and synchronization were housed
on a controller board based on a 2.3GHz quad-core Intel
i7 processor from National Instruments. This processor was
connected through a 64Gb/s PCI Express bus to a 1TB Solid
State Drive (SSD) configured as RAIDO to achieve a read/write
bandwidth of 6.4Gb/s throughput. The high throughput al-
lowed cloud screening to access the SSD simultaneously with
the processor’s own acquisition and synchronization processes.
The processor board, the FPGA board, and the SSD were
integrated inot a PXI chassis from National Instruments. A
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GUI was designed to allow the user to control the data
acquisition and synchronization process as well as the onboard
cloud screening system.

A. Procedure

We designed the system to implement the cloud screening
algorithm, computing solar-normalized cloud thresholds in
advance using the archive of historical AVIRIS-NG test flights.
We used these data to calculate optimal thresholds for the
0.45 pm and 1.65 pum channels. When a flight began the
real-time system monitored the filesystem for new data and
immediately applied cloud screening. It started by first reading
the current aircraft location from the Inertial Measurement
Unit / Global Positioning System (IMU/GPS) information
synchronized with the instrument data and stored with the
images on the SSD. It calculated the solar ephemeris and ad-
justed cloud thresholds to the new observation geometry. The
system then analyzed the image as it was recorded, producing
two products: a real time operator notification displaying the
average cloud fraction of the scene, and a cloud mask image
recording pixel-level classifications for later analysis.

We evaluated the system during a twelve day science
campaign over Casper, Wyoming, USA in June 2013. This
campaign collected 23 flight segments comprising over a
Terabyte of raw data. The images showed a mixture of bare
terrain, industrial facilities, and vegetation. While the terrain
content was diverse, science operations required clear skies so
the data was not representative of global cloud and clear-sky
distributions. However, in one flight when the ground obser-
vation sortie was cut short by clouds, the aircraft intentionally
climbed from 2290m above mean-sea level (MSL) to 4420m
MSL in order to fly above the rapidly growing cumuli.

B. Results

Soon after reaching the desired altitude, the software’s
cloud-fraction display abruptly departed from 0.0, where it
had consistently remained during the earlier portion of the
flight. The cloud-fraction rapidly climbed to 1.0 while flying
over the denser portions of the clouds. Post-analysis revealed
that the system had successfully identified the opaque clouds
and, when compared with a human interpretation, had labeled
the correct segments of the flight line for excision. Figure 15
shows the result: the left panel is the original image, the center
panel shows the pixels exceeding both thresholds, and the right
panel shows the excised image blocks.

Table V summarizes the entire campaign. Columns show
the time and the number of images in each batch, the total
number of image lines, the fraction of pixels that were
flagged as cloudy prior to spatial aggregation, and the final
cloud screening result - whether any lines were excised and
whether clouds were actually present. In cloudless scenes,
isolated structures and bright objects occasionally exceeded
both channel thresholds. This occurred for a fraction of pixels
from 0.02% to 0.007%. However, these small pixel areas
were successfully ignored during the spatial aggregation step,
so the onboard system passed all clear-sky images without
modification and committed no false excisions. The overall

result was that cloud screening performed without error and
kept pace with the sensor’s 0.5 Gb/s data production rate
throughout the campaign. It will continue to be deployed on
future flights.

TABLE V
AVIRIS-NG FLIGHT CAMPAIGN RESULTS. THE lines COLUMN INDICATES
THE NUMBER OF IMAGE LINES IN EACH GROUP. THE pixel fraction
COLUMN INDICATES THE PROPORTION OF INDEPENDENT PIXELS THAT
WERE MARKED AS CLOUDY DURING THE INITIAL THRESHOLDING. NONE
OF THESE RESULTED IN ANY FALSE POSITIVE EXCISIONS.

Date Time images lines pixel fraction excised clouds
14 June 2013 14:43:44 1 960 0 N N
14 June 2013 22:52:28 4 186560 7.38 x 10~5 N N
18 June 2013 20:25:42 2 4480 0 N N
18 June 2013 21:59:05 2 2880 0 N N
18 June 2013 22:59:41 3 70720 1.75 x 10~3 N N
18 June 2013 23:18:56 1 32000 1.45 x 10~3 N N
18 June 2013 23:26:57 2 36480 1.27 x 1073 N N
18 June 2013 23:36:12 1 24000 1.12 x 1073 N N
19 June 2013 15:56:23 1 4800 0 N N
19 June 2013 18:23:42 5 60480 1.55 x 10~4 N N
19 June 2013 18:57:54 8 257920 6.58 x 10~* N N
20 June 2013 15:45:15 13 508160 3.01 x 10~* N N
20 June 2013 18:34:10 4 177280 3.36 x 10~4 N N
21 June 2013 17:32:09 7 224000 4.96 x 10~* N N
21 June 2013 18:44:38 1 960 0 N N
21 June 2013 18:46:57 9 333440 3.14 x 10~4 N N
23 June 2013 17:01:46 3 108800 1.76 x 10—* N N
23 June 2013 17:45:53 13 448320 2.09 x 10~* N N
24 June 2013 16:00:40 5 147840 3.00 x 10—* N N
24 June 2013 17:01:04 10 221120 2.06 x 10~3 N N
24 June 2013 17:56:11 5 158080 1.41 x 103 N N
25 June 2013 15:57:28 5 153600 3.94 x 10~* N N
25 June 2013 16:49:28 7 174720 6.32 x 103 Y Y
Total 142 3847266

V. CONCLUSIONS

This work describes a novel method for cloud screening
onboard spacecraft at Gb/s data rates. We perform the most
challenging computations on the ground, exploiting foreknowl-
edge of observation geometry and surface type to predict the
brightness of terrain pixels and cloud pixels. We calculate
optimal thresholds in uncalibrated instrument values that can
be uploaded for real-time execution by the flight system. Anal-
ysis on a three-year archive of AVIRIS-C images demonstrates
that this simple approach can reduce instrument data volumes
by a factor of two with insignificant loss of science data.
A deployment onboard the AVIRIS-NG platform corroborates
this performance in blind real time demonstrations. The testbed
system will continue to accumulate additional operational
experience in future AVIRIS-NG campaigns.

The excised data is, by definition, unrecoverable. This is a
problem for investigations that are wholly intolerant of data
loss, or that study the clouds themselves. However, having
implemented the screening option, designers would be free
to choose the threshold level most appropriate to the science
needs of each observation. This contrasts with the status quo,
where there is no such option and missions cannot escape the
resource cost of clouds. Our tests suggest that high rates of
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~

Fig. 15. AVIRIS-NG image ang20130625t174216. The images at center and
right show the result of onboard real time cloud screening.

data reduction are achievable for very conservative settings.
For an Earth-orbiting spectrometer, trivial cases such as open
ocean yield most of the benefit, and very strict thresholds
can excise most clouds over land terrain. We anticipate the
highest risk of false alarms for scenes with bright snow or
sun glint. As compensation, snow can be segregated as a
separate terrain type and tracked over time using snow cover
products from other missions. As an extreme measure, one
could simply turn cloud screening off to avoid seasonal areas
where snow could appear. Sun glint can be anticipated from
imaging geometry. However, many investigations consider sun
glint to be a contaminant similar to clouds.

The specific operational concept may vary depending on
mission needs. Our prototype consists of a realtime component
requiring streaming Gb/s processing, and an offline component
having effectively no restrictions on computation or commu-
nication. While this is an idealized view, it is appropriate
for real space operations scenarios. The offline computing
needs would not be a significant bottleneck, since calcula-
tions take just a few minutes on a modern laptop computer.
High Performance Computing (HPC) resources would make
it a real-time operation. Nor is irregular communications an
obstacle, since threshold settings could be computed long in
advance based on the known observation geometry. Finally,
one could always compromise computing or communication
by limiting the number of threshold updates and applying the
same thresholds over longer time segments spanning multiple

terrain types and solar zenith angles. More exotic operational
concepts are possible. If the spacecraft or instrument can be
pointed, the spectrometer could select targets based on the
cloud screening result - perhaps scanning across its field of
regard until a suitable clear scene is found.

There are several straightforward ways to improve accu-
racy. One could use three or more channels in the threshold
decision. However, it is likely that more channels will offer
diminishing returns. They would also require additional his-
togram dimensions, which quickly becomes intractable as the
number of channels increases. Future work could seek alter-
native representations that scale better with dimensionality. A
more promising approach would be to incorporate additional
domain knowledge into the state vector. One could condition
thresholds on very specific land types or on real-time cloud
products like the GOES cloud mask. Preprocessing and feature
extraction could also improve performance. For example, one
could compute spectral derivatives; sums, differences, or ratios
of channels; or continuum-relative absorption band depths
[46]. Such spectral features could potentially improve results
at a low computational cost.

One could always design a more complex cloud classifier
to disambiguate the most difficult pixels and consequently
achieve a slight improvement in data volume reduction. How-
ever, our simple algorithm already achieves better than 90%
of the theoretical maximum making it sufficient for many
applications and a useful point on the design trade space. At
a time when communications and storage subsystems struggle
under increasing data rates, the potential for onboard cloud
screening has remained relatively unstudied. Mission designers
should bear in mind that a few simple design considerations
- the introduction of channel and aggregation thresholds - can
enable factor-of-two reductions in data volume.
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